Identification of mutations related to phytate accumulation in barley kernels

  • V. B. Katrii Institute of Plant Physiology and Genetics of NAS of Ukraine, Ukraine, 03022, Кyiv, Vasylkivska str., 31/17 https://orcid.org/0000-0003-4034-3270
  • L. G. Velikozhon Інститут фізіології рослин і генетики НАН України, Україна, 03022, м. Київ, вул. Васильківська, 31/17; Інститут клітинної біології та генетичної інженерії НАН України, Україна, 03143, м. Київ, вул. Академіка Заболотного, 148 https://orcid.org/0000-0002-5935-9363
  • L. V. Slivka Institute of Plant Physiology and Genetics of NAS of Ukraine, Ukraine, 03022, Кyiv, Vasylkivska str., 31/17 https://orcid.org/0000-0001-6133-4395
  • B. V. Morgun Institute of Plant Physiology and Genetics of NAS of Ukraine, Ukraine, 03022, Кyiv, Vasylkivska str., 31/17; Institute of Cell Biology and Genetic Engineering of NAS of Ukraine, Ukraine, 03143, Кyiv, Akademika Zabolotnoho str., 148 https://orcid.org/0000-0001-7041-6894
Keywords: barley, phosphorus, phytates, lpa-mutations, marker-assisted selection

Abstract

Aim. To conduct DNA marker testing on a sample of Ukrainian selection barley samples for identify various lpa-mutations that affect to the qualitative composition of phosphorus in barley grains. Мethods. Isolation of DNA (CTAB method), polymerase chain reaction (PCR) and electrophoretic determination of DNA amplification products in agarose gel for the identification of lpa mutations in barley grains. Results. The conducted molecular genetic studies of 20 breeding lines of hulless barley made possible to identify samples that have lpa-1 and lpa-2 mutations. The presence of such mutant genes determines a low content of organic (unavailable inorganic) phosphorus and an increased content of mineral (available) phosphorus that can be absorbed by the human body. Conclusions. The applied methods of identification of lpa-1 and lpa-2 mutations that affecting to the phytate content in whole grain barley allow for effective analysis of selection lines and mutant samples that can be used in future crossing schemes.

References

Yildiz G., Bigicli N. Effects of whole buckwheat flour on physical, chemical and sensory properties of flat bread, Lavas. Czech Journal of Food Science. 2012. Vol. 30 (6). P. 534–540. doi: 10.17221/10/2012-CJFS.

Zhou G., Panozzo J., Zhang X–Q., Cakir M., Harasymow S., Li C. QTL mapping reveals genetic architectures of malting quality between Australian and Canadian malting barley (Hordeum vulgare L.). Mol Breeding. 2016. Vol. 36 (6). P. 1–12. doi: 10.1007/s11032-016-0492-9.

Rybalka O. I., Schwartau V. V., Polishchuk S. S., Morgun B. V. Reduction of phytate content as a means of barley biofortification on grain mineral composition. Plant Phys. Gen. 2019. Vol. 51 (2). P. 95–113. doi: 10.15407/frg2019.02.095. [in Ukrainian]

Guttieri M., Bowen D., Dorsch J., Raboy V. et al. Identification and characterization of a low phytic acid wheat. Crop Sci. 2003. Vol. 44. Р. 418–424. doi: 10.2135/cropsci2004.1505.

Stewart C. N., Via L. E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Bio Techniques. 1993. Vol. 14 (5). P. 748–749.

Yuan F., Zhao H., Ren X., Zhu S., Fu X., Shu, Q. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor. Appl. Genet. 2007. Vol. 115. Р. 945–957. doi: 10.1007/s00122-007-0621-2.

Campion B., Sparvoli F., Doria E., Tagliabue G., Galasso I., Fileppi M., Bollini R. Nielsen E. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2009. Vol. 118. Р. 1211–1221. doi: 10.1007/s00122-009-0975-8.

Hitz W., Carlson T., Kerr P. Sebastian S. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 2002. Vol. 28. Р. 650–660. doi: 10.1104/pp.010585.

Shi J., Wang H., Wu Y., Hazebroek J., Meeley R. Ertl D. The maize lowphytic acid mutant 1pa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 2003. Vol. 131. Р. 507–515. doi: 10.1104/pp.014258.

Shi J., Wang, H., Hazebroek, J., Ertl, D., Harp, T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J. 2005. Vol. 42. Р. 708–719. doi: 10.1111/j.1365-313X.2005.02412.x.

Kim S., Andaya C., Newman J., Goyal S., Tai T. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor. Appl. Genet. 2008. Vol. 117. Р. 1291–1301. doi: 10.1007/s00122-008-0863-7.

Shi J., Wang H., Schellin K., Li B., Faller M., Stoop J., Meeley R., Ertl D., Ranch J., Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat. Biotechnol. 2007. Vol. 25. Р. 930–937. doi: 10.1038/nbt1322.

Xu X., Zhao H., Liu Q., Frank T., Engel K., An G., Shu Q. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor. Appl. Genet. 2009. Vol. 119. Р. 75–83. doi: 10.1007/s00122-009-1018-1.