Bacillus subtilis strain producer preparation with increased accumulation of riboflavin

  • M. M. Radchenko Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osipovskogo str., 2a
  • H. S. Andriiash Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osipovskogo str., 2a
  • N. Y. Beiko Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osipovskogo str., 2a
  • O. O. Tigunova Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osipovskogo str., 2a
  • S. M. Shulga Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osipovskogo str., 2a
Keywords: Bacillus subtilis, producer strain, riboflavin, chemical mutagenesis

Abstract

Aim. The increasing of riboflavin accumulation by chemical mutagenesis of Bacillus subtilis IMB B-7797 strain producer was the aim of this work. Methods. We used the method of treating the strain producer with a chemical mutagen N-methyl-N-nitro-N-nitrosoguanidine to achieve this goal and followed by culturing the resulting clone and determining the accumulation of riboflavin. Results. B. subtilis IFBG NTG2 mutant strain producer which differed in morphological characteristics (color, size, colony shape) and riboflavin accumulation from the original culture as a result of chemical mutagen action on B. subtilis IMB B-7797 was obtained. Conclusions. B. subtilis IFBG NTG2 mutant strain  producer as a result of action on B. subtilis IMB B-7797 by chemical mutagen and which differed in morphological features (color, size, colony shape) and riboflavin accumulation from the original culture. was obtained, B. subtilis IFBG NTG2 strain producer, which produced riboflavin amount of 14.8 g/dm3, which is 9% more than produced by the original B. subtilis IMB B-7797 strain producer was obtained by chemical mutagenesis. B. subtilis IFBG NTG2 strain produser is further proposed for use in industrial technology of riboflavin and creation of  a recombinant strain produser for synthesis of riboflavin.

References

Revuelta J. L., Ledesma-Amaro R., Lozano-Martinez P., Díaz-Fernández D., Buey R.M., Jiménez A. Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol. 2016. Vol. 44 (4–5). P. 659–665. doi: 10.1007/s10295-016-1842-7.

Schwechheimer S.K., Park E.Y., Revuelta J.L., Becker J., Wittmann C. Biotechnology of riboflavin. Appl Microbiol Biotechnol. 2016. Vol. 100 (5). P. 2107–2119. doi: 10.1007/s00253-015-7256-z.

Survase S.A., Bajaj I.B., Singhal R.S. Biotechnological Production of Vitamins. Food Technology and Biotechnology. 2006. Vol. 44 (3). P. 381–396.

Revuelta J.L., Buey R.M., Ledesma-Amaro R., Vandamme E.J. Microbial biotechnology for the synthesis of (pro)vitamins, biopigments and antioxidants: challenges and opportunities. Microbial biotechnology. 2016. Vol. 9 (5). P. 564–567. doi: 10.1111/1751-7915.12379.

Lim S.H., Choi J.S., Park E.Y. Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famata: An overview. Biotechnol. Bioproc. Eng. 2001. Vol. 6. P. 75–88. doi: 10.1007/bf02931951.

You J., Pan X., Yang C., Du Y., Osire T., Yang T., Zhang X., Xu M., Xu G., Rao Z. Microbial production of riboflavin: Biotechnological advances and perspectives. Metabolic Engineering. 2021. Vol. 68. P. 46–58. doi: 10.1016/j.ymben.2021.08.009.

Stahmann K.P., Revuelta J.L., Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Applied Microbiology and Biotechnology. 2000. Vol. 53 (5). P. 509–516. doi: 10.1007/s002530051649.

Tajima S., Itoh Y., Sugimoto T., Kato T., Park E. Y. Increased Riboflavin Production from Activated Bleaching Earth by a Mu-tant Strain of Ashbya gossypii. Journal of Bioscience and Bioengineering. 2009. Vol. 108 (4). Р. 325–329. doi: 10.1016/j.jbiosc.2009.04.021.

Schmidt G., Stahmann K. P., Kaesler B., Sahm H. Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii. Microbiology. 1996. Vol. 142. Р. 419–426. doi: 10.1099/13500872-142-2-419.

Jiménez A., Santos M. A., Pompejus M., Revuelta J. L. Metabolic Engineering of the Purine Pathway for Riboflavin Production i Ashbya gossypii. Applied and Environmental Microbiology. 2005. Vol. 71 (10). Р. 5743–5751. doi: 10.1128/AEM.71.10.5743-5751.2005.

Bacher A., Eberhardt S., Fischer M., Kis K., Richter G. Biosynthesis of vitamin B2 (Riboflavin). Annu. Rev. Nutr. 2000. Vol. 20. P. 153–167. doi: 10.1146/annurev.nutr.20.1.153.

Massey V. The Chemical and Biological Versatility of Riboflavin. Biochemical Society Transactions. 2000. Vol. 28 (4). P. 283–296.

Averianova L.A., Balabanova L.A., Son O.M., Podvolotskaya A.B., Tekutyeva L.A. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front. Bioeng. Biotechnol. 2020. Vol. 8. P. 570828. doi: 10.3389/fbioe.2020.570828.

Adrio Jose L., Demain Arnold L. Genetic improvement of processes yielding microbial products. FEMS Microbiology Reviews. 2006. Vol. 30 (2). P. 187–214. doi: 10.1111/j.1574-6976.2005.00009.x.

Radchenko M.M., Tigunova O.O., Zelena L.B., Beiko N.Ye., Andriiash H.S., Shulga S.M. Phylogenetic analysis of the Bacillus subtilis IFBG MK-2 strain and riboflavin production by its induced clones. Cytol Genet. 2021. Vol. 55 (2). P. 145–151. doi: 10.3103/S0095452721020134.