Evaluation of polyploid miscanthus lines usage efficiency as a feedstock for bioethanol production

  • R. Y. Blume
  • O.V. Melnychuk
  • S.P. Ozheredov
  • D.B. Rakhmetov
  • Y.B. Blume

Abstract

Aim. Main aim of this research was the evaluation of theoretical bioethanol yield (per ha) from hexaploid giant miscanthus (Miscanthus х giganteus) and further comparison with conventional triploid form as well as with other bioethanol crops. Methods. Several mathematic functions were determined that describe yearly yield dynamics and equations, which were used in calculations of theoretical bioethanol yield. Results. The theoretical bioethanol yield was evaluated for different hexaploid miscanthus lines. The most productive in terms of ethanol yield were lines 108 and 202, from which potential bioethanol yield was found to be higher than in control line (6451 L/ha) by 10.7 % and 14.2% respectively and can reach 7144 L/ha and 7684 L/ha. Conclusions. It was determined that the most productive lines of polyploid miscanthus (lines 108 and 202) are able to compete with other plant cellulosic feedstocks for second-generation bioethanol production in Ukraine. However, these lines show bioethanol productivity than sweet sorghum, in the case when sweet sorghum is processed for obtainment of both first- and second-generation bioethanol.

Keywords: bioenergy crops, biofuels, giant miscanthus, Miscanthus, polyploidy, second-generation bioethanol.

References

Brosse N., Dufour A., Meng X., Sun Q., Ragauskas A. Miscanthus: a fast- growing crop for biofuels and chemicals production. Biofuels, Bioprod. Bioref. 2012. Vol. 6. P. 580–598. doi: 10.1002/bbb.1353.

Dubis B., Jankowski K.J., Załuski D., Bórawski P., Szempliński W. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large-scale farm in Poland. Glob. Change Biol. Bioenergy. 2019. Vol. 11. P. 1187–1201. doi: 10.1111/gcbb.12625.

Weijde T., Kamei C.L.A., Torres A.F., Vermerris W., Dolstra O., Visser R.G., Trindade L.M. The potential of C4 grasses for cellulosic biofuel production. Front. Plant Sci. 2013. Vol. 4. P. 107. doi: 10.3389/fpls.2013.00107.

Chramiec-Glabik A., Grabowska-Joashimiak A., Sliwinska E., Legutko J., Kula A. Cytogenetic analysis of Miscanthus × gi-ganteus and its parent forms. Caryologia. 2012. Vol. 65. P. 234–242. doi: 10.1080/00087114.2012.740192.

Zhang K., Wang, X, Cheng, F. Plant polyploidy: origin, evolution, and its influence on crop domestication. Hortic. Plant J. 2019. Vol. 5 (6). P. 231–239. doi: 10.1016/j.hpj.2019.11.003.

Chae W.B., Hong S.J., Gifford J.M., Rayburn A.L., Widholm J.M., Juv Ik J.A. Synthetic polyploid production of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus x giganteus. Glob. Change Biol. Bioenergy. 2013. Vol. 5. P. 338–350. doi: 10.1111/j.1757-1707.2012.01206.x.

Melnychuk O.V., Ozheredov S., Rakhmetov D.B., Shysha O.O., Rakhmetova S.O., Yemets A.I., Blume Y.B. Induction of polyploidy in giant Miscanthus (Miscanthus × giganteus Greef Et Deu.). Proc. Latv. Acad. Sci. B Nat. exact. appl. sci. 2020. Vol. 74 (3). P. 206–214. doi: 10.2478/prolas-2020-0032.

Scagline-Mellor S., Griggs T., Skousen J., Wolfrum E., Holásková I. Switchgrass and giant miscanthus biomass and theoretical ethanol production from reclaimed mine lands. Bioenerg. Res. 2018. Vol. 11. P. 562–573. doi: 10.1007/s12155-018-9915-2.

Rakhmetova S.O., Vergun O.M., Blume R.Y., Bondarchuk O.P., Shymanska O.V., Tsygankov S.P., Yemets A.I., Blume Ya.B., Rakhmetov D.B. Ethanol production potential of sweet sorghum in North and Central Ukraine. Open Agric. J. 2020. Vol. 14. P. 321–338. doi: 10.2174/1874331502014010321.

Guo H., Zhao Y., Chen X., Shao Q., Qin W. Pretreatment of Miscanthus with biomass-degrading bacteria for increasing delignification and enzymatic hydrolysability. Microb. Biotechnol. 2019. Vol. 12 (4). P. 787–798. doi: 10.1111/1751-7915.13430.

Anderson E., Arundale R., Maughan M., Oladeinde A., Wycislo A., Voigt T. Growth and agronomy of Miscanthus x giganteus for biomass production. Biofuels. 2011. Vol. 2 (1). P. 71–87. doi: 10.4155/bfs.10.80.

Baibakova O.V., Skiba E.A., Budaeva V.V., Gismatulina Yu.A., Sakovich G.V. Producing bioethanol from Miscanthus: Ex-perience of primary scale-up. Catal. Ind. 2020. Vol. 12. P. 155–161. doi: 10.1134/S2070050420020038.

Lee W.-C., Kuan W.-C. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol. J. 2015. Vol. 10. P. 840–854. doi: 10.1002/biot.201400704.

Rakhmetovа S.O., Vergun O.M., Kulyk M.I., Blume R.Y., Bondarchuk O.P., Blume Y.B., Rakhmetov D.B. Efficiency of switchgrass (Panicum virgatum L.) cultivation in the Ukrainian forest-steppe zone and development of its new lines. Open. Agric. J. 2020. Vol. 14. P. 273–289. doi: 10.2174/1874331502014010273.

Yemets A.I., Blume R.Y., Rakhmetov D.B., Blume Y.B. Finger millet as a sustainable feedstock for bioethanol production. Open. Agric. J. 2020. Vol. 14. P. 257–272. doi: 10.2174/1874331502014010257.