Genetic transformation of promising genotypes of winter bread wheat by in planta method

  • L. V. Slivka Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine
  • O. V. Dubrovna Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine

Abstract

Aim. Optimization of conditions and genetic transformation of new promising genotypes of winter bread wheat (Triticum aestivum L.) by in planta method. Methods. Agrobacterium-mediated transformation by the in planta method using strain AGL0 and vector construct pBi-OAT. Results. The influence of air temperature, optical density of cells of agrobacterial suspension, inoculation day and composition of inoculation medium on the frequency of obtaining transgenic plants of new promising genotypes of winter wheat was studied. The dependence of the frequency of obtaining transgenic plants on environmental conditions, in particular temperature, has been established. It was found that the temperature regime of 20-22 °C provided the largest number (4.4%) of wheat transformants, and when the temperature is reduced to 16-18 °C there is a decrease in the efficiency of T-DNA transfer into the plant genome and the lowest frequency of transformation is observed. Conclusions. The largest number of transformants was obtained using a inoculation medium without sucrose, the optical density of cells of the agrobacterial suspension of 0.4 op.od. and inoculation on the third day after castration of ears.

Keywords: Triticum aestivum L., Agrobacterium-mediated transformation, ornithine-δ-aminotransferase gene.

References

Hiei Y., Ishida Y., Komari T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Sci. 2014. Vol. 5. P. 1–11. doi: 10.3389/fpls.2014.00628.

Dubrovna O.V., Morgun B.V. Current status of research on Agrobacterium-mediated wheat transformation. Fiziol. rast. genet. 2018. Vol. 50 (3). P. 187–217. doi: 10.15407/frg2018.03.187.

Hussain J., Manan S., Ahmad S., Ahmed T., Shah M. Biotechnоlogies used in genetic transformation of Triticum aestivum: A mini overview. FUUAST J. BIOL. 2003. 3. P. 105–109.

Borisjuk N., Kishchenko O., Eliby S., Schramm C., Anderson P., Jatayev S., Kurishbayev A., Shavrukov Y. Genetic modification for wheat improvement: from transgenesis to genome editing. BioMed Research International. 2019. 18 p. doi.org/10.1155/2019/6216304.

Mykhalska S.I., Sergeeva L.E., Matveyeva A.Yu., Kobernik N.I., Kochetov A.V., Tishchenko O.M., Morgun V.V. The free proline elevated levels of osmotolerant transgenic corn plants with dsRNA suppressor proline dehydrogenase gene. Plant Physiology and Genetics. 2014. Vol. 46 (6.) P. 482–489. [in Ukrainian]

Anwar A., She M., Wang K. Cloning and molecular characterization of Triticum aestivum ornithineamino transferase (TaOAT) encoding genes. BMC Plant Biol. 2020. 20, 187. doi: 10.1186/s12870-020-02396-2.

Stránská J., Tylichová M., Kopecný D., Snégaroff J., Sebela, M. Biochemical characterization of pea ornithine-δ-aminotransferase: substrate specificity and inhibition by di- and polyamines. Biochimie. 2010. Vol. 92. Р. 940–948. doi: 10.1016/j.biochi.2010.03.026.

Anwar Alia, She Maoyun, Wang Ke, Riaz Bisma, Ye, Xing-guo. Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. International Journal of Molecular Sciences. 2018. 19. 3681. doi: 10.3390/ijms19113681.

You J., Hu H., Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice. Plant Sci. 2012. 197. P. 59–69.

Liu C., Xue Z., Tang D., Shen Y., Shi W., Ren L., Du G., Li Y., Cheng Z. Ornithine δ-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. Plant J. 2018. 96. P. 842–854.

Комісаренко А.Г., Михальська С.І., Курчій В.М. Продуктивність рослин пшениці озимої з додатковою копією гена орнітин-δ-амінотрансферази. Factors in experimental evolution of organisms. 2019. Vol. 25. P. 211–214. doi: 10.7124/FEEO.v25.1171. [in Ukrainian]

Gerasimova S.V., Kolodazhnaya Y.S., Titov S.E., Romanova A.V., Koval V.S., Kochetov A.V., Shumny V.K. Tobacco transformants expressing kDNA the ornithine amino transferase gene Medicago truncatula. Genetics. 2010. Vol. 46. P. 1000–1003. [in Russian]

Sidorov V., Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods Mol. Biol. 2009. Vol. 526. P. 47–58. doi: 10.1007/978-1-59745-494-0_4.

Chumakov M.I., Moiseeva E.M. Agrobacterial transformation technology of plants in planta. Biotekhnologiya, 2012. No. 1. P. 8–20.

Moiseeva Y.M., Velikhov V.A., Volokhina I.V., Gusev Yu.S., Yakovleva O.S., Chumakov M.I. Agrobacterium-mediated transfоrmation of maize with antisense suppression of the proline dehydrogenase gene by an in planta method. British Biotechnology Journal. 2014. 4 (2). P. 116–125. doi: 10.9734/BBJ/2014/6504.