Association of PPARG and PPARGC1 polymorphism with effectiveness of exercise-induced fat mass loss

  • Iu. Iu. Mazur
  • S. B. Drozdovska
  • O. V. Andrieieva
  • Yu. Vinnichuk
  • A. Polishchuk
  • I. O. Andreev
  • V. Ye. Dosenko
  • С. Pickering
  • І. І. Ahmetov


Aim. Peroxisome proliferator activated receptor gamma (PPARG) and PPARG coactivator 1α (PPARGC1A) is a key regulator of energy metabolism. This study examines the influence of PPARG and PPARGC1A gene polymorphisms on the PPARG expression, obesity risk, lipoprotein profile and effectiveness of the physical activity intervention for improvement of these parameters. Methods. 39 women with BMI>30 kg/m2 participated in the three-months fitness-program and followed a hypocaloric diet (1500 kCal). At the beginning and at the end of the program, the following anthropometric and biochemical parameters were measured: BMI, percentage of total and visceral fat, amount of plasma lipoproteins, cholesterol, and triglycerides. Single nucleotide polymorphisms were identified in PPARG (n=94) and PPARGC1A (n=138) genes. PPARG mRNA expression was measured through reverse transcription PCR. Results. The physical exercise intervention resulted in a significant fat mass loss in all participants (40.3±5.3% before the study vs 36.4±5.7% after the study, P<0.00001). Polymorphisms rs6442311, rs6846769, rs6846769 were associated with lower visceral fat percent, rs6442311 also correlated with PPARG expression. PPARGC1A polymorphisms rs4458444, rs2305681 were associated with plasma lipoproteins, cholesterol, and triglyceride content. Weight loss effectiveness was connected with rs17650401, rs9833097, rs12629751. Conclusions. After correction for multiple comparisons only rs17650401, of PPARGC1A gene was associated with more effective fat mass reduction.

Keywords: PPARG, obesity, single nucleotide polymorphism, weight loss, exercise intervention.


Bray G.A., Bellanger T. Epidemiology , Trends , and Morbidities of Obesity and the Metabolic Syndrome. Endocrine. 2006. Vol. 29, No. 1. P. 109-117. doi: 10.1385/ENDO:29:1:109

Rank M., Siegrist M., Wilks D., Haller B., Wolfarth B., Langhof H., Halle M. Long-term effects of an inpatient weight-loss program in obese children and the role of genetic predisposition-rationale and design of the LOGIC-trial. BMC Pediatrics. 2012. Vol. 30. P. 1-11. doi: 10.1186/1471-2431-12-30

Deram S, Villares S.M.F. Effectiveness of weight loss strategies. Arq Bras Endocrinol Metab. 2009. Vol. 53, No. 2. P. 129-138. doi: 10.1590/S0004-27302009000200003

Chung W.K. An Overview of Mongenic and Syndromic Obesities in Humans. Pediatr Blood Cancer. 2011. Vol. 58, No 1. P. 122-128. doi: 10.1002/pbc.23372

Finkler E., Heymsfield S.B. Rate of Weight Loss Can Be Predicted by Patient Characteristics and Intervention Strategies. YJADA. 2012. Vol. 112, No. 1. P. 75-80. doi: 10.1016/j.jada.2011.08.034

Anghel S.I., Wahli W. Fat poetry : a kingdom for PPARγ. Cell Res. 2007. Vol. 17, No. 6. P. 486-511. doi: 10.1038/cr.2007.48

Deeb S.S., Fajas L., Nemoto M., Pihlajamäki J., Mykkänen L., Kuusisto J., Laakso M., Fujimoto W., Auwerx J. A Pro12Ala substitution in PPARγ 2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998. Vol. 20, No. 3. P. 284-287. doi: 10.1038/3099

Ramos-Lopez O., Riezu-Boj J.I., Milagro F.I., Goni L., Cuervo M., Martinez J.A., Association of the Gly482Ser PPARGC1A gene variant with different cholesterol outcomes in response to two energy-restricted diets in subjects with excessive weight. Nutrition. 2018. Vol. 47. P. 83-89. doi: 10.1016/j.nut.2017.10.008

Goni L., García-Granero M., Milagro F.I., Cuervo M., Martínez J.A Phenotype and genotype predictors of BMI variability among European adults. Nutr. Diabetes. 2018. Vol. 8, No. 1. P. 1-8. doi: 10.1038/s41387-018-0041-1

Leońska-Duniec A., Ahmetov I.I., Zmijewski P. Genetic variants influencing effectiveness of exercise training programmes in obesity - an overview of human studies. Biol Sport. 2016. Vol. 33, No. 3. P. 207-214. doi: 10.5604/20831862.1201052

Ma X., Wang D., Zhao W., Xu L. Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex. Front. Endocrinol. (Lausanne). 2018. Vol. 9. P. 1-10. doi: 10.3389/fendo.2018.00473

Petridou A., Tsalouhidou S., Tsalis G., Schulz T., Michna H., Mougios V. Long-term exercise increases the DNA binding activity of peroxisome proliferator-activated receptor γ in rat adipose tissue. Metabolism. 2007. Vol. 56, No. 8. P. 1029-1036. doi: 10.1016/j.metabol.2007.03.011

Shamsi B.H., Ma C., Naqvi S., Xiao Y. Effects of pioglitazone mediated activation of PPAR-γ on CIDEC and obesity related changes in mice. PLoS One. 2014. Vol. 9, No. 9. P. 1-8. doi: 10.1371/journal.pone.0106992

Ramírez-Vélez R., Correa-Rodríguez M., Izquierdo M., Schmidt-Riovalle J., González-Jiménez E. Muscle fitness to visceral fat ratio, metabolic syndrome and ideal cardiovascular health metrics. Nutrients. 2019. Vol. 11, No. 1. P. 1-13. doi: 10.3390/nu11010024

Puigserver P., Wu Z., Park C.W., Graves R., Wright M., Spiegelman B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998. Vol. 92, No. 6. P. 829-839. doi: 10.1016/S0092-8674(00)81410-5

Singh S.P., Schragenheim J., Cao J., Falck J.R., Abraham N.G., Bellner L. PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat. 2016. Vol. 125. P. 8-18. doi: 10.1016/j.prostaglandins.2016.07.004

Estall J.L., Kahn M., Cooper M.P., Fisher f.M., Wu M.K., Laznik D., Qu L., Cohen D.E., Shulman G.I., Spiegelman B.M. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-γ coactivator-1α expression. Diabetes. 2009. Vol. 58, No. 7. P. 1499-1508. doi: 10.2337/db08-1571

Liu Y., Zhai J., Chen J., Wang X., Wen T. PGC-1α protects against oxidized low-density lipoprotein and luteinizing hormone-induced granulosa cells injury through ROS-p38 pathway. Hum Cell. 2019. Vol. 32, No. 3. P. 285-296. doi: 10.1007/s13577-019-00252-6

Hettema J.M., Webb B.T., Guo A.Y., Zhao Z., Maher B.S., Chen X., An S.S., Sun C., Aggen S.H., Kendler K.S., Kuo P.H., Otowa T., Flint J., Oord E.J. Prioritization and association analysis of murine-derived candidate genes in anxiety-spectrum disorders. Biol. Psychiatry. 2011. Vol. 70, No. 9. P. 888-896. doi: 10.1016/j.biopsych.2011.07.012

St-Pierre J., Drori S., Uldry M., Silvaggi J.M., Rhee J., Jäger S., Handschin C., Zheng K., Lin J., Yang W., Simon D.K., Bachoo R., Spiegelman B.M. Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. Cell. 2006. Vol. 127, No. 2. P. 397-408. doi: 10.1016/j.cell.2006.09.024

Sarzynski M.A, Rankinen T., Sternfeld B., Grove M.L., Fornage M., Jacobs D.R., Sidney S., Bouchard C. Association of SNPs from 17 Candidate Genes with Baseline Symptom-Limited Exercise Test Duration and Decrease in Duration over 20 Years: The CARDIA Fitness Study. Circ Cardiovasc Genet. 2013. Vol. 3, No. 6. P. 531-538. doi: 10.1161/CIRCGENETICS.110.957183

Vargas-ortiz K., Victoriano P., Mac M.H. Exercise and Sirtuins : A Way to Mitochondrial Health in Skeletal Muscle. Int J Mol Sci. 2019. Vol. 20, No. 11. P. 1-11. doi: 10.3390/ijms20112717

Zheng W., Rogoschin J., Niehoff A., Oden K., Kulling S.E., Xie M., Diel P. Combinatory effects of phytoestrogens and exercise on body fat mass and lipid metabolism in ovariectomized female rats. J. Steroid Biochem. Mol. Biol. 2018. Vol. 178. P. 73-81. doi: 10.1016/j.jsbmb.2017.11.002

Mulya A., Haus J.M., Solomon T.P., Kelly K.R., Malin S.K., Rocco M., Barkoukis H., Kirwan J.P. Exercise training-induced improvement in skeletal muscle PGC-1α-mediated fat metabolism is independent of dietary glycemic index. Obesity. 2017. Vol. 25, No. 4. P. 721-729. doi: 10.1002/oby.21799

Lee E., Hsu C., Van den Berg D., Ursin G., Koh W.P., Yuan J.M., Stram D.O., Yu M.C., Wu A.H. Genetic variation in peroxisome proliferator-activated receptor gamma, soy, and mammographic density in Singapore Chinese women. Cancer Epidemiol. Biomarkers Prev. 2012. Vol. 21, No. 4. P. 635-644. doi: 10.1158/1055-9965.EPI-11-1042

Jablonski K.A., McAteer J.B., de Bakker P.I., Franks P.W., Pollin T.I., Hanson R.L., Saxena R., Fowler S., Shuldiner A.R., Knowler W.C., Altshuler D., Florez J.C. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010. Vol. 59, No. 10. P. 2672-2681. doi: 10.2337/db10-0543