Glyphosate selection of maize transformants containing CP4epsps gene

  • I. O. Nitovska
  • B. V. Morgun
  • O. Ye. Abraimova
  • T. M. Satarova


Aim. To study the selection conditions of maize transformants containing the CP4epsps gene using glyphosate as a selective agent. Methods. Tissue culture in vitro, Agrobacterium-mediated transformation, selection of transgenic plants, isolation of total plant DNA, analysis of plant DNA by polymerase chain reaction (PCR). Results. The morphogenic maize callus of immature embryos of the hybrid (PLS61)R2×PLS61 was produced, which had a high regeneration rate (up to 95%), that persisted over long cultivation. Agrobacterium mediated transformation of the morphogenic callus and selection of the transgenic material using glyphosate yielded maize transformants containing the CP4epsps gene at a frequency of 1%. Conclusions. Maize genotype (PLS61)R2×PLS61 is promising for studies on the maize genetic transformation, in particular for the production of transgenic maize resistant to glyphosate herbicide. The use of morphogenic maize callus (PLS61)R2×PLS61 and glyphosate as a selective agent at a concentration of 0.1 mM and 0.25 mM in media for callusogenesis and 0.01 mM in the medium for regeneration was effective for the selection of transgenic plants with the gene CP4epsps.

Keywords: Zea mays L., morphogenic callus, Agrobacterium-mediated transformation, PCR, genetic engineering.


Qamar Z., Aaliya K., Nasir I.A., Farooq A.M., Tabassum B., Ali Q., Ali A., Awan M.F., Tariq M., Husnain T. An overview of genetic transformation of glyphosate resistant gene in Zea mays. Nature and Science. 2015. Vol. 13 (3). P. 80-90. Accepted from:

Karimi Y., Prasher S.O., Patel R.M., Kim S.H. Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture. 2006. Vol. 51, P. 99-109. doi: 10.1016/j.compag.2005.12.001

Amrhein N., Deus B., Gehrke P., Steinrücken H.C. The site of the inhibition of the shikimate pathway by glyphosate, II: interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980. Vol. 66 (5). P. 830-834. doi: 10.1104/pp.66.5.830

ISAAA. Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. Ithaca, NY: The International Service for the Acquisition of Agri-biotech Applications. 2018. Accepted from:

Zhou H., Arrowsmith J.W., Fromm M.E., Hironaka C.M., Taylor M.L., Rodriguez D., Pajeau M.E., Brown S.M., Santino C.G., Fry J.E. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 1995. Vol. 15. P. 159-163. doi: 10.1007/BF00193711

Howe A.R., Gasser Ch.S., Brown Sh.M., Padgette S.R., Hart J., Parker G.B., Fromm M.E., Armstrong Ch.L. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Molecular Breeding. 2002. Vol. 10. P. 153-164. doi: 10.1023/A:1020396708088

Yadava P., Abhishek A., Singh R., Singh I., Kaul T., Pattanayak A., Agrawal P.K. Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci. 2017. Vol. 7. P. 1-12. doi: 10.3389/fpls.2016.01949

Kishore G.M., Padgette S.R., Fraley R.T. History of herbicide-tolerant crops, methods of development and current state of the art-emphasis on glyphosate tolerance. Weed Technol. 1992. Vol. 6. P. 626-634. doi: 10.1017/S0890037X00035934

Sidorov V., Duncan D. Agrobacterium-mediated maize transformation: immature embrious versus callus. Methods in Molecular Biology: Transgenic Maize. M. Paul Scott (ed.). USA: Humana press, 2009. P. 47-58. doi: 10.1007/978-1-59745-494-0_4

Forlani G., Racchi M.L. Glyphosate tolerance in maize (Zea mays L.). Differential response among inbred lines. Euphytica. 1995. Vol. 82. P. 157-164. doi: 10.1007/BF00027062

Nitovska I.O., Abraimova O.Ye., Duplij V.P., Derkach K.V., Satarova T.M., Rudas V.A., Cherchel V.Yu. Dziubetskyi B.V., Morgun B.V. Application of beta-glucuronidase transient expression for selection of maize genotypes competent for genetic transformation. Cytology and Genetics. 2019. Vol. 53 (6). P. 451-458. doi: 10.3103/S0095452719060082

Nitovska I.O., Komarnytsky I.K., Morgun B.V. Glyphosate selection of maize transgenic callus lines among genotypes of Ukrainian plant breeding. Fakt. Eksp. Evol. Org. 2017. Vol. 20. P. 237-242. [in Ukrainian] doi: 10.7124/FEEO.v20.771

Koncz C., Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 1986. Vol. 204. P. 383-396. doi: 10.1007/BF00331014

Pescitelli S.M., Sukhapinda K. Stable transformation via electroporation in to maize Type II callus and regeneration of fertile transgenic plants. Plant Cell Rep. 1995. Vol. 14. P. 712-716. doi: 10.1007/BF00232653

Murashige T., Skoog F. A Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962. Vol. 15. Р. 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Stewart N.C. Jr., Laura E. Via a rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. BioTechnique. 1993. Vol. 14 (5). P. 748-749.

Derkach K.V., Abraimova O.E., Satarova T.M. Morphogenesis in vitro in maize inbred lines from the Lancaster heterotic group. Cytology and Genetics. 2017. Vol. 51 (1). P. 48-53. doi: 10.3103/S0095452717010030

Matzke M.A., Mosher R.A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014. Vol. 15. P. 394-408. doi: 10.1038/nrg3683