Application of auxin-cytokinin substitute in vitro culture Solanacea crops

  • R. V. Kovbasenko
  • O. P. Dmitriev
  • T. M. Oliynik

Abstract

Aim. The purpose of our research was to establish the possibility of initiation of potato and tomato culture plants using industrial growth regulators, which are legal for use in Ukraine, which include substances with pronounced auxin-cytokinin activity. Methods. In this work, we used varieties of tomato: Khoriv, Borivsky and Bozhedar, Povin potatos. Work in culture in vitro was performed according to conventional methods. Results. A phytohormone substitute was created in a known nutrient agar medium according to Murasige-Skuga. For the in vitro cultivation of tomato and potato plants, phytohormones were replaced by solutions of Ecostim and Ecostim 1, which exhibited auxin-cytokinin activity. The cost of these substitutes is much lower than that of commercial phytohormones. Conclusions. It is shown that optimal for growth in the MS medium in the callusogenesis of Solanacea cultures in vitro. That variant with the use of cytokinin substitutes Ecostim and Ecostim 1 with the rate of using of 35.0 and 40.0 mg/L.

Keywords: modification of MS medium, potatoes, tomatoes, cell culture in vitro.

References

Tsyrenov V.Zh. Osnovy biotekhnologii. Kul'tivirovanie izolirovannykh kletok i tkaney rasteniy. Ulan-Ude, 2003. 28 p. [in Russian]

David K.M., Couch D., Braun N., Brown S., Grosclaude J., Perrot L. Rechenmann C. The auxin-binding protein 1 is essential for the control of cell cycle. Plant J. 2007. Vol. 50. P. 197-206. doi: 10.1111/j.1365-313X.2007.03038.x

Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K., Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001. Vol. 409. P. 1060-1063. doi: 10.1038/35059117

Murashige T., Skoog F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. 1962. Physiol Plant. 15 (3). P. 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Perelik pestytsydiv i ahrokhimikativ, dozvolenykh do vykorystannia v Ukraini. K.: Yunivest Mediia, 2018. 1039 p. [in Ukrainian]

Butenko R.G. Plant cell culture and biotechnology. M., 1986. 344 p.

Kushnir H.P., Sarnats'ka V.V. Mikroklonal'ne rozmnozhennia roslyn. K.: Naukova dumka, 2005. 270 p. [in Ukrainian]

Skoog F., Miller C.O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Molecular and Cellular Aspects of Development, E. Bell, ed., Harper and Row. New York, 1965. P. 481-494.

Reinert J., Yeoman М.М. Plant Cell and Tissue Culture. A. Laboratory Manual. Berlin: N.Y. Springer Verlag, 1982. 86 p. doi: 10.1007/978-3-642-81784-7

Wernicke W., Milkovits L. Effect of auxin on the mitotic cell cycle in cultured leaf segments at different stages of development in wheat. Physiol. Plant. 1987. Vol. 69 (1). P. 16-22. doi: 10.1111/j.1399-3054.1987.tb01940.x

Bregitzer P., Bushnell W.R., Rines H.W., Somers P.A. Callus formation and plant regeneration from somatic embryos of oat (Avena sativa L.). Plant Cell Reports. 1991. Vol. 10 (2). P. 243-246. doi: 10.1007/BF00232567

Gamburg K.Z., Rekoslavskaia N.I., Shvetsov S.G. Auksiny v kul'turakh tkaney i kletok rasteniy. Novosibirsk: Nauka. Sib. Otdnie, 1990. 243 p. [in Russian]

Yoshida F., Kohono H. Regulations of mineral and especially nitrogen nutrition to growth rate of plant cell cultures. Plant cell culture. 1987. Vol. 4 (2). P. 53-59. doi: 10.5511/plantbiotechnology1984.4.53

Hallaway M., Osborne D.J. Ethylene: a factor in defoliation induced by auxins. Science. 1969. Vol. 163 (3871). Р. 1067-1068. doi: 10.1126/science.163.3871.1067

Faivre-Rampant O., Cardele L., Marschall D., Viola R., Taylor M.A. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J. Exp. Bot. 2004. Vol. 55. P. 613-622. doi: 10.1093/jxb/erh075

Hannapel D.J. Signalling in induction of tuber formation. In: Potato Biology and Biotechnology. Ed. Vreugdenhil D. Amsterdam: Elsevier, 2007. P. 237-256. doi: 10.1016/B978-044451018-1/50054-3

Kloosterman B., De Koeyer D., Griffiths R., Flinn B., Steuernagel B., Scholz U. et al. Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct. Integr. Genomics. 2008. Vol. 8. P. 329-340. doi: 10.1007/s10142-008-0083-x

Roumeliotis E., Kloosterman B., Oortwijn M., Kohlen W., Bouwmeester H.J., Visser R.G.F., Bachem C.W.B. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of experimental Botany. 2012. Vol. 63 (12). Р. 4539-4548. doi: 10.1093/jxb/ers132

Mokronosov A.T. Klubneobrazovanie i donorno-aktseptornye sviazi u kartofelia. Reguliatsiia rosta i razvitiia u kartofelia. Pod red. Chaylakhiana M.Kh. i Mokronosova A.T. M.: Nauka, 1990. P. 6-12. [in Russian]

Machackova I., Konstantinova T.N., Sergeeva L.I., Lozhnikova V.N., Golyanovskaya S.A., Dudko N.D., Eder J., Aksenova N.P. Photoperiodic Control of Growth, Development and Phytohormone Balance in Solanum tuberosum. Physiol. Plant. 1998. Vol. 102. P. 272-278. doi: 10.1034/j.1399-3054.1998.1020215.x

Kolachevskaia O.O. Vliianie gena biosinteza auksina tms1 pod kontrolem klubnespetsificheskogo promotora na klubneobrazovanie kartofelia in vitro. Avtoref. diss. kand. biol. nauk. Moskva, 2015. 23 p. [in Russian]

Fuller K.V. Chemicals from plant cell cultures - some biochemical and physiological pointers. Chemistry and industry. Oxford, 1984. Vol. 23. P. 825-833.