Organization of the 5s rDNA intergenic spacer of Quercus rubra L. and its relationship to the ukrainian Quercus species

  • Yu. O. Tynkevich
  • K. D. Bushyla
  • R. A. Volkov


Aim. Quercus rubra L. is a representative of the North American section Lobatae, which has naturalized in Ukraine and becomes an invasive species in some places. Accordingly, elucidation of its relationship with the Ukrainian species of section Quercus is relevant to assess the possibility of interspecific hybridization. The 5S rDNA intergenic spacer (IGS) represents a convenient molecular marker to address this question. Methods. DNA isolation, PCR amplification, cloning and sequencing. Results. The IGS of Q. rubra was cloned and sequenced. It was shown that after the divergence of the Lobatae and Quercus sections, the IGS sequences evolved mainly by accumulation of nucleotide substitutions. A high level of IGS similarity was found for species within the Labatae and Quercus sections, while the genetic distances between the representatives of these two sections appeared significantly higher. Conclusions. The high level of nucleotide substitutions indicates a considerable genetic distance between the Lobatae and Quercus sections and calls into question the possibility of spontaneous hybridization between Q. rubra and Ukrainian native species of the section Quercus. At the same time, the close genetic relationship between other North American species, Q. lobata and Ukrainian "white oaks" indicate that introduction of representatives of this group may create conditions for their spontaneous crossing with the native species, which could be undesirable for the conservation of Ukraine's natural forest-steppe communities. Sequencing of the 5S rDNA IGS can be used for molecular genotyping of the Quercus species and for identification of interspecific hybrids.

Keywords: 5S rDNA, molecular evolution, Quercus, Lobatae.


Magni Diaz, C.R. Reconstitution de l’introduction de Quercus rubra L. en Europe conséquences génétiques dans les population allochtones. PhD Thesis. ENGREF, Paris, France. 2005. 419 p.

Woziwoda B., Kopeć D., Witkowski J. The negative impact of intentionally introduced Quercus rubra L. on a forest community. Acta Soc. Bot. Pol. 2014. Vol. 83 (1). P. 39–49. doi: 10.5586/asbp.2013.035.

Mosyakin S.L. Fedoronchuk M.M. Vascular plants of Ukraine: a nomenclatural checklist. Kiev: M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2019. 345 p. doi: 10.13140/2.1.2985.0409

Denk T., Grimm G.W., Manos P.S., Deng M., Hipp A.L. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns, Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Cham: Springer. 2017. P. 13–38. doi: 10.1007/978-3-319-69099-5_2.

Piatnitskiy S.S. Otdalennaia gibridizatsiia dubov: Dis. doktora s.-g. nauk: 06.03.01. KhSKhI. Khar'kov, 1948. 179 p. [in Russian]

Badalov P.P., Los' S.A. Vnesok S.S. P’iatnits'kogo u rozvitok lіsovoї selektsії. Lіsіvnitstvo і agrolіsomelіoratsіia: Zb. nauk. pr. Kharkіv: UkrNDІLGA, 2009. Vol. 116. P. 3–8. [in Ukrainian]

Iozus A.P., Morozova E.V., Makarov V.M. Osnovnye rezul'taty selektsii i gibridizatsii listvennykh drevesnykh porod dlia zashchitnogo lesorazvedeniia. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy. 2014. Vol. 11 (4). P. 613–617. [in Russian]

Rushton B.S. Natural hybridization within the genus Quercus L. Ann. For. Sci. 1993. Vol. 50. P. 73–90.

Barciszewska M.Z., Szymañski M., Erdmann V.A., Barciszewski J. Structure and functions of 5S rRNA. Acta Biochim. Polon. 2001. Vol. 48 (1). P. 191–198.

Cloix C., Tutois S. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genom Res. 2000. Vol. 10. P. 679–690. doi: 10.1101/gr.10.5.679.

Volkov R.A., Zanke C., Panchuk I.I., Hemleben V. Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theor. Appl. Genet. 2001. Vol. 103 (8). P. 1273–1282. doi: 10.1007/s001220100670.

Rusak I.I., Petrashchuk V.I., Panchuk I.I., Volkov R.A. Molecular organization of 5S rDNA in two Ukrainian populations of Sycamore (Acer pseudoplatanus). Bull. Vavilov Soc. Genet. Breed. Ukr. 2016. Vol. 14 (2). P. 216–220. doi: 10.7124/visnyk.utgis.14.2.691. [in Ukrainian]

Panchuk I.I., Kasianchuk R.M., Volkov R.A. Subrepeats in 5S rDNAs as a molecular marker in Acer platanoides L. populations. Factors of experim. evol. organisms. 2019. Vol. 25. P. 80–85. doi: 10.7124/FEEO.v25.1143. [in Ukrainian]

Tynkevich, Y.O., Nevelska A.O., Chorney I.I., Volkov R.A. Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus. Bull. Vavilov Soc. Genet. Breed. Ukr. 2015. Vol. 13 (1). P. 81-87. [in Ukrainian]

Saini A., Jawali N. Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications. Plant Syst. Evol. 2009. Vol. 280 (3-4). P.187. doi: 10.1007/s00606-009-0178-4.

Volkov A.R., Panchuk I.I. 5S rDNA of Dactylis glomerata (Poaceae): molecular organization and taxonomic application. Bull. Vavilov Soc. Genet. Breed. Ukr. 2014. Vol. 12 (1). P. 3–11.

Ishchenko O.O., Derevenko T.O. Panchuk I.I. 5S rDNA of Timothy-grass Phleum pratense L., Sci. Herald of Chernivtsy University. Biology (Biological Systems). 2018. Vol. 10 (2). P. 107–112. [in Ukrainian]

Ishchenko O.O., Panchuk I.I. Molecular organization of 5S rDNA of perennial ryegrass Lolium perenne L., Bull. Vavilov Soc. Genet. Breed. Ukr. 2018. Vol. 16 (2), P. 166–173. doi: 10.7124/visnyk.utgis.16.2.1054. [in Ukrainian]

Calió M.F., Lepis K.B., Pirani J.R., Struwe L., Phylogeny of Helieae (Gentianaceae): Resolving taxonomic chaos in a Neotropical clade. Mol. Phylogen. Evol. 2017 Vol. 106, P. 192–208. doi: 10.1016/j.ympev.2016.09.013.

Denk T., Grimm G.W. The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon. 2010. Vol. 59 (2). P. 351–366. doi: 10.1002/tax.592002.

Simeone M.C., Cardoni S., Piredda R., Imperatori F., Avishai M., Grimm G.W., Denk T. Comparative systematics and phylogeography of Quercus section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. Peer. J. 2018. Vol. 6. P. e5793. doi: 10.7717/peerj.5793.

Tynkevich Y.O., Volkov R.A. 5S ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application. Cytol. Genet. 2019. Vol. 53 (6). P. 26–35. doi: 10.3103/S0095452719060100.

Stratiichuk A.S., Derevenko T.O., Tynkevich Y.O. Organization of 5S rDNA repeated unit of Quercus imbricaria Michx. Bull. Vavilov Soc. Genet. Breed. Ukr. 2019. Vol. 17 (2). P. 179–186. doi: 10.7124/visnyk.utgis.17.2.1219. [in Ukrainian]

Porebski S., Bailey L.G., Baum B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997. Vol. 15 (1). P. 8–15. doi: 10.1007/BF02772108.

Panchuk I.I., Volkov R.A. Praktykum z molekuliarnoi henetyky. Chernivtsi: Ruta. 2007. 120 p. [in Ukrainian]

Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 1997. Vol. 25 (17). P. 3389–3402. doi: 10.1093/nar/25.17.3389.

Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994. Vol. 22. P. 4673–4680. doi: 10.1093/nar/22.22.4673.

Stamatakis A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014. Vol. 30 (9). P. 1312–1313. doi: 10.1093/bioinformatics/btu033.

Sork V.L., Squire K., Gugger P.F., Steele S.E., Levy E.D., Eckert A.J. Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobate. Am. J. Bot. 2016. Vol. 103 (1). P. 33–46. doi: 10.1007/s11295-016-0975-1

Douet J., Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity. 2007. Vol. 99. P. 5–13. doi:org/10.1038/sj.hdy.6800964.

Simon L., Rabanal F.A., Dubos T., Oliver C., Lauber D., Poulet A., Vogt A., Mandlbauer A., Le Goff S., Sommer A., Duborjal H., Tatout C., Probst A.V. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucl. Acids Res. 2018. Vol. 46 (6). P. 3019–3033. doi: 10.1093/nar/gky163.

Tynkevich Y.O. Volkov R.A. Structural organization of 5S ribosomal DNA in Rosa rugosa. Cytol. Genet. 2014, Vol. 48 (1). P. 1–6. doi: 10.3103/S0095452714010095.

Tynkevich Y.O., Volkov R.A. Novel structural class of 5S rDNA of Rosa wichurana Crep. Reports of the National Academy of Sciences of Ukraine. 2014. (5). P. 143–148. [in Ukrainian]

Ohri D., Ahuja M.R. Giemsa C-banded karyotype in Quercus L (Oak). Silvae Genet. 1990. Vol. 39. P. 216–219.