Autophagy development as an adaptive response to microgravity conditions in Arabidopsis thaliana
Abstract
Aim. The main aim of the study was to analyze the effect of microgravity on the growth and development of Arabidopsis thaliana seedlings at different time intervals of cultivation (4–10 days) and to investigate the development of autophagy induced by the conditions of microgravity in seedlings root cells. Methods. Microscopic methods as well as in vitro propagation method were used. To simulate of microgravity conditions plants were placed in clinostat machine. Results. In the course of experiments, the peaks of the formation of autophagosome were recorded: in the cells of the root cap zone of at 9th day and in the cells of the root zone extension on the 10th day of clinical establishment. Conclusions. It can be concluded that microgravity is capable to induce the development of autophagy in the roots of A. thaliana seedlings. Cells with signs of autophagy were revealed on the 9th and 10th day of cultivation of seedlings under microgravity conditions.
Keywords: Arabidopsis thaliana, autophagy, microgravity.
References
Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy. J. Nat. Rev. Mol. Cell Biol. 2018. Vol. 19 (6). P. 349–364. doi: 10.1038/s41580-018-0003-4.
Reggiori F., Klionsky D.J. Autophagic processes in yeast: mechanism, machinery and regulation. J. Genetics. 2013. Vol. 194. P. 341–361. doi: 10.1534/genetics.112.149013.
Wang P., Mugume Y., Bassham DC. New advances in autophagy in plants: regulation, selectivity and function. J. Semin. Cell Dev. Biol. 2018. Vol. 80. P. 113–122. doi: 10.1016/j.semcdb.2017.07.018.
Kriel J., Loos B. The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. J. Cell Death Differ. 2019. Vol. 26. P. 640–652. doi: 10.1038/s41418-018-0267-4.
Yoshimoto K., Ohsumi Y. Unveiling the molecular mechanisms of plant autophagy – from autophagosomes to vacuoles in plants. J. Plant Cell Physiol. 2018. Vol. 59 (7). P. 1337–1344. doi.org/10.1093/pcp/pcy112.
Hofius D., Munch D., Bressendorff S. Role of autophagy in disease resistance and hypersensitive response-associated cell death. J. Cell Death Differ. 2011. Vol. 18 (8). P. 1257–1262. doi: 10.1038/cdd.2011.43.
Nah J., Yuan J., Jung Y.-K. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. J. Mol. Cells. 2015. Vol. 38. P. 381–389. doi: 10.14348/molcells.2015.0034.
Stefan W.R., Augustine M.K. Autophagy: an integral component of the mammalian stress response. J. Biochem. Pharmacol. Res. 2013. Vol. 1 (3). P. 176–188.
Olenieva V., Lytvyn D., Yemets A., Bergounioux C., Blume Y. Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in Arabidopsis thaliana. J. Cell Biol. Int. 2017. doi: 10.1002/cbin.10843.
Blaber E.A., Pecaut M.J., Jonscher K.R. Spaceflight activates autophagy programs and the proteasome in mouse liver. Int. J. Mol. Sci. 2017. Vol. 18 (10). doi: 10.3390/ijms18102062.
Ferranti F., Caruso M., Cammarota M., Masiello M.G., Corano Scheri K., Fabrizi C., Fumagalli L., Schiraldi C., Cucina A., Catizone A., Ricci G. Cytoskeleton modifications and autophagy induction in TCam-2 seminoma cells exposed to simulated microgravity. J. BioMed. Res. Int. 2014. doi: 10.1155/2014/904396.
Li C.F., Sun J.X., Gao Y., Shi F., Pan Y.K., Wang Y.C., Sun X.Q. Clinorotation-induced autophagy via HDM2-p53-mTOR pathway enhances cell migration in vascular endothelial cells. J. Cell Death Dis. 2018. Vol. 9 (2). P. 147. doi: 10.1038/s41419-017-0185-2.
Markolefa I., Lambrou G. The role of autophagy during osteoclastogenesis under microgravity conditions. Int. J. Astrobiol. 2018. P. 1–7. doi: 10.1017/S1473550418000277.
Sambandam Y., Townsend M. Microgravity control of autophagy modulates osteoclastogenesis. J. Bone. 2014. Vol. 61. P. 125–131. doi: 10.1016/j.bone.2014.01.004.
Wang Y.-C., Lu D.-Y., Shi F., Zhang S., Yang C.-B., Wang B., Cao X.-S., Du T.-Y., Gao Y., Zhao J.-D., Sun X.-Q. Clinorotation enhances autophagy in vascular endothelial cells. J. Biochem. Cell Biol. 2013. Vol. 91 (5). P. 309–314. https://doi.org/10.1139/bcb-2013-0029.
Kordyum E.L. Biology of plant cells in microgravity and under clinostating. J. Int. Rev. Cytol. 1997. Vol. 171. P. 1–78.
Kordyum E.L. Plant cell gravisensitivity and adaptation to microgravity. J. Plant Biol. 2014. Vol. 16. P. 79–90. doi: 10.1111/plb.12047.
Kordyum E.L., Chapman D.K. Plants and microgravity: Patterns of microgravity effects at the cellular and molecular levels. J. Cytol. Genet. 2017. Vol. 51 (2). P. 108–116.
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. J. Physiol. Plant. 1962. Vol. 15. P. 473–497.
Kundelchuk O.P., Tarasenko L.V., Blume Ya.B. Influence of amiprophosmethyl on the root cell structure in the herbicide-sensitive and resistant lines of Nicotiana plumbaginifolia. Russ. J. Plant Physiol. 2002. Vol. 49 (3). P. 381–386 doi: 10.1023/A:1015501304476.
Soga K., Kotake T., Wakabayashi K., Hoson T. Changes in the transcript levels of microtubule-associated protein MAP65-1 during reorientation of cortical microtubules in azuki bean epicotyls. J. Acta Physiol. Plant. 2012. Vol. 4. P. 533–440. doi: 10.1007/s11738-011-0850-5.
Soga K., Kotake T., Wakabayashi K., Kamisaka S., Hoson T. Transient increase in the transcript levels of γ-tubulin complex genes during reorientation of cortical microtubules by gravity in azuki bean (Vigna angularis) epicotyls. J. Plant Res. 2008. Vol. 121. P. 493–498. doi: 10.1007/s10265-008-0179-3.
Soga K., Wakabayashi K., Hoson T. Growth and cortical microtubule dynamics in shoot organs under microgravity and hypergravity conditions. J. Plant Signaling & Behavior. 2018. Vol. 13. doi: 10.1080/15592324.2017.1422468.
Inoue Y., Suzuki T., Hattori M., Yoshimoto K., Ohsumi Y., Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. J. Plant Cell Physiol. 2007. Vol. 47 (12). P. 1641–1652. doi.org/10.1093/pcp/pcl031.
Olenieva V. Vplyv UF-B na transkrypciyni profili geniv osnovnyh bilkiv zaluchenyh do rozvytku autophagiy za uchastu mi-crotrubochok. Ex Lytvyn D., Yemets A., Blume Y. Dopovidi Nacionalnoy academiy nauk Ukraiyny. 2018. V. 1. P. 100–108. [in Ukrainian]
Olenieva V. Vplyv goloduvaniya, osmotychnogo ta solovogo stresiv na transkrypciyni profili geniv osnovnyh bilkiv zalu-chenyh do rozvytku autophagiy za uchastu microtrubochok. Ex Lytvyn D., Yemets A., Blume Y. Visnyk Ukr. Tovarystva geneykiv i selekcioneriv. 2018. Vol. 16 (2). P. 174–180. [in Ukrainian]
Olenieva V. Expresia kinezinov goloduvaniya, osmotychnogo ta solovogo stresiv na transkrypciyni profili geniv osnovnyh bilkiv zaluchenyh do rozvytku autophagiy za uchastu microtrubochok. Ex Lytvyn D., Yemets A., Blume Y. Visnyk Ukr. Tovarystva geneykiv i selekcioneriv. 2018. Vol. 16 (2). P. 174–180. [in Ukrainian]
Olenieva V. Ekspressiya kinezinov, uchastvuyushchikh v razvitii autofagii u Arabidopsis thaliana, i vklad atsetilirovaniya tubulina vo vzryvoopasnyy belok ATG8 s mikrotrubochkami. Ex Lytvyn D., Yemets A., Blume Y. Faktory eksperymental’noyi evolyutsiyi orhanizmiv: Zb. nauk. pr. K.: Ukr. t-vo henetykiv i selektsioneriv im. M.I. Vavylova, 2018. Vol. 22. P. 162–168. [in Ukrainian]