Evaluation of some physiological and biochemical parameters of Camelina sativa seedlings under osmotic stress

  • L. V. Nishchenko
  • L. O. Sakhno

Abstract

Aim. To find the most drought resistant spring camelina (Camelina sativa (L.) Crantz) genotype for further involvement in genetic transformation experiments, the some physiological and biochemical parameters of seedlings have been investigated under normal conditions and osmotic stress in vitro. Methods. Sterile seeds were planted on Murashige and Skoog agarized medium without hormones or the same media supplemented with mannitol as an osmotic stress inductor. Germination, fresh weight, total soluble protein content, and superoxide dismutase (SOD) activity have been investigated in 7-day-old seedlings. Results. The analyzed camelina genotypes were differed in their reactions on water deficit in vitro. It has been revealed that higher SOD activity of FEORZhYaF-1 seedlings was accompanied by higher germination and higher ability to fresh weight accumulation under osmotic stress as compared to other varieties. Conclusions. FEORZhYaF-1 breeding form could be involved in genetic transformation experiments to improve drought resistance. SOD activity should be used as a parameter for selection of osmotic stress resistant plant material.

Keywords: Camelina sativa (L.) Crantz  drought resistance, superoxide dismutase, total soluble protein.

References

Reyer C.P.O., Leuzinger S., Rammig A., Wolf A., Bartolomeus R.P., Bonfante A., de Lorenzi F., Dury M., Gloning P., Jaoudé R.A., Klein T., Kuster T.M., Martins M., Niedrist G., Riccardi M., Wohlfahrt G., de Angelis P., de Dato G., François L., Menzel A., Pereira M. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology. 2013. Vol. 19. P. 75–89. doi: 10.1111/gcb.12023.

Nath U.K., Wilmer J.A., Wallington E.J., Becker H.C., Möllers C. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT+Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor. Appl. Genet. 2009. Vol. 118. P. 765–773. doi.org/10.1007/s00122-008-0936-7.

Diaz-Vivancos P., Barba-Espin G., Clemente-Moreno M.J., Hernandez J.A. Characterization of the antioxidant system during the vegetative development of pea plants. Biol. Plant. 2010. Vol. 54. P. 76–82. doi.org/10.1007/s10535-010-0011-5.

Matamoros M.A., Loscos J., Dietz K.J., Aparicio-Tejo P.M., Becana M. Function of antioxidant en-zymes and metabolites during maturation of pea fruits. J. Exp. Bot. 2010. Vol. 61. P. 87–97. doi: 10.1093/jxb/erp285.

Pandey P., Srivastava R.K., Dubey R.S. Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings. Protoplasma. 2014. Vol. 251. P. 147–160. doi: 10.1007/s00709-013-0533-8.

Zaoui S., Gautier H., Bancel D., Chaabani G., Wasli H., Lachaâl M., Karray-Bouraoui N. Antioxidant pool optimization in Carthamus tinctorius L. leaves under different NaCl levels and treatment durations. Acta Physiol. Plant. 2016. Vol. 38. Article 187. doi: 10.1007/s11738-016-2204-9.

Gusta L.V., Benning N.T., Wu G. Luo X.,Liu X.,Gusta M.L., McHughen A. Superoxide dismutase: an all-purpose gene for agri-biotechnology. Mol. Breed. 2009. Vol. 24. P. 103–115. doi.org/10.1007/s11032-009-9274-y.

Shonnard D.R., Williams L., Kalnes T.N. Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ. Prog. Sustain. Energy. 2010. Vol. 29. P. 382–392. doi.org/10.1002/ep.10461.

Moore R.H., Thornhill K.L., Weinzierl B., Sauer D., D’Ascoli E., Kim J., Lichtenstern M., Scheibe M., Brian Beaton B., Bey-ersdorf A.J., Barrick J., Bulzan D., Corr C.A., Crosbie E., Jurkat T., Martin R., Riddick D., Shook M., Slover G., Voigt C., White R., Winstead E., Yasky R., Ziemba L.D., Brown A., Schlager H., Anderson B.E. Biofuel blending reduces particle emis-sions from aircraft engines at cruise conditions. Nature. 2017. Vol. 543. P. 411–414. doi.org/10.1038/nature21420.

State register of plant varieties suitable for dissemination in Ukraine in 2019. P. 242. URL: https://sops.gov.ua/reestr-sortiv-roslin (Last accessed: 28.01.2019).

Rakhmetov D.B., Rahmetova S.O., Boychuk Yu.N., Blume Ya.B., Yemets A.I. Physiological and morphological characteris-tics of new forms and varieties of spring false flax (Camelina sativa). Visn. ukr. tov. genet. sel. 2014. Vol. 12 (1). P. 65–77. [In Ukrainian]

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962. Vol. 15. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976. Vol. 72. P. 248–254. doi: 10.1016/0003-2697(76)90527-3.

Beyer W.F., Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 1987. Vol. 161. P. 559–566. doi: 10.1016/0003-2697(87)90489-1.