β-glucosidase PYK 10 gene expression in Arabidopsis thaliana (L.) Heynh. seedlings under clinorotation and X-radiation
Abstract
Aim. Among plants used in spaceflight experiments, species of family Brassicaceae are considered as the most resistant to radiation exposure. It is supposed that ER-bodies, which are derivative of granular endoplasmic reticulum and selectively accumulate an enzyme β-glucosidase, may be responsible for this resistance. We firstly investigated expression of β-glucosidase PYK10 gene in A. thaliana seedlings under slow horizontal clinorotation and Х-radiation of doses 0.5 Gy, 1 Gy, 2 Gy, 4 Gy, 6 Gy, 8 Gy, 10 Gy, and 12 Gy. Methods. Seedlings were grown on agar nutrient medium. PYK 10 expression was determined using a method of real-time PCR. Results. Significant enhancement of PYK 10 expression and increasing a number of ER-bodies in A. thaliana seedlings under the influence of clinorotation and X-radiation in comparison with control was established. An increase in the number of ER-bodies was due to PYK 10 high expression and β-glucosidase synthesis without a rise of enzyme activity under clinorotation, while β-glucosidase activity increased under X-radiation. Plant responses to X-radiation became adaptive during 10 days after radiation, in which β-glucosidase plays a crucial role. Conclusions. Increased PYK 10 expression in A. thaliana seedlings under clinorotation and X-radiation is a part of the internal program of plant protection against the action of environmental factors. ER-bodies containing β-glucosidase may be one of the main components of the plant protection system from the influence of clinorotation and X-radiation.
Keywords: Arabidopsis thaliana (L.) Heynh., ER-bodies, β-glucosidase, gene expression, clinorotation, Х-radiation.
References
Sychev V.N., Levinskikh M.A., Podolsky I.G. Biological component of life support systems for a crew in long-duration space expeditions. Acta Astronaut. 2008. Vol. 63. P. 1119–1125. doi: 10.1016/j.actaastro.2008.01.001.
Karoliussen I.B.E., Kittang A.I. Will plants grow on Moon or Mars? Curr. Biotechnol. 2013. Vol. 2. P. 235–243. doi: 10.2174/22115501113029990019.
De Micco V., Arena C., Pignalosa D., Durante M. Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics. 2011. Vol. 50 (1). P. 1–19. doi: 10.1007/s00411-010-0343-8.
International Space Station Internal Radiation Monitoring (ISS Internal Radiation Monitoring) – 05.04.2017. URL: https://www.nasa.gov/mission_pages/station/research/experiments/1043.html.
Kordyum E.L. Plant cell gravisensitivity and adaptation to microgravity. Plant Biology. 2014. Vol. 16 (Suppl. 1). P. 79–90. doi: 10.1111/plb.12047.
Link B.M., Durst S.J., Zhou W., Stankovic B. Seed-to-seed growth of Arabidopsis thaliana on the International Space Station. Adv Space Res. 2003. Vol. 31 (10). P. 2237–2243. doi: 10.1016/S0273-1177(03)00250-3.
Hayashi Y., Yamada K., Shimada T., Matsushima R., Nishizawa N.K., Nishimura M., Hara-Nishimura I. A proteinase_storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol. 2001. Vol. 42. Р. 894–899. doi: 10.1093/pcp/pce144.
Ketudat Cairns J.R., Esen A. β-glucosidases. Cell Mol Life Sci. 2010. Vol. 67 (20). P. 3389–3405. doi: 10.1007/s00018-010-0399-2.
Matsushima R., Kondo M., Nishimura M., Hara-Nishimura I. A novel ER-derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER retention signal in Arabidopsis. Plant J. 2003. Vol. 33. P. 493–502. doi: 10.1046/j.1365-313X.2003.01636.x.
Romanchuk S.М. Ul'trastruktura statocitіv ta klіtin distal'noї zoni roztiagu v Arabidopsis thaliana za umov klіnostatuvannia. Citologіia і genetika. 2010. T. 44, № 6. S. 3–8. [in Ukrainian] doi: 10.3103/S0095452710060010.
Romanchuk S. ER bodies in Arabidopsis thaliana root apices under clinorotation and after X-Ray irradiation. Cracow-Plant-Stress Conference Series No. 9 (problem issues). The F. Gorski Institute of Plant Physiology, PAS, Cracow, Poland, 2013. P. 185–192.
Romanchuk S.М. Aktivnіst' β-gliukozidazi v prorostkakh Arabidopsis thaliana (L.) Heynh pri dії іonіzuiuchogo vipromіniuvannia. Vіsnik Kharkіvs'kogo nacіonal'nogo unіversitetu іmenі V.N. Karazіna. Serіia «Bіologіia». 2017. Vip. 29. S. 103–108. [in Ukrainian] doi: 10.26565/2075-5457-2017-29-13.
Romanchuk S.М. Aktivnіst' β-gliukozidazi iak pokaznik zakhisnoї sistemi roslin Brassicaceae Juss. pri klіnostatuvannі. Aktual'nі problemi botanіki ta ekologії: materіali mіzhnarodnoї konferencії molodikh uchenikh (Berezne, Rіvnens'ka oblast', Ukraїna, 9–13 serpnia 2011 r.). Kiїv: TOV «Veles», 2011. S. 195–196. [in Ukrainian]
Matsushima R., Hayashi Y., Kondo M., Shimada T., Nishimura M., Hara-Nishimura I. An endoplasmic reticulum derived structure that is induced under stress conditions in Arabidopsis. Plant Physiol. 2002. Vol. 130. P. 1807–1814. doi: 10.1104/pp.009464.
Ogasawara K., Yamada K., Christeller J.T., Kondo M., Hatsugai N., Hara-Nishimura I., Nishimura M. Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct β-glucosidases. Plant Cell Physiol. 2009. Vol. 50 (3). P. 480–488. doi: 10.1093/pcp/pcp007.
Matsushima R., Fukao Y., Nishimura M., Hara-Nishimura I. NAI1 gene that encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of a novel ER-derived structure, the ER body. Plant Cell. 2004. Vol. 16. Р. 1536–1549. doi: 10.1105/tpc.021154.
Nitz I., Berkefeld H., Puzio P.S., Grundler F.M.W. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci. 2001. Vol. 161. P. 337–346. doi: 10.1016/S0168-9452(01)00412-5.
Sherameti I., Venus Y., Drzewiecki C., Tripathi S., Dan V.M., Nitz I., Varma A., Grundler F.M., Oelmüller R. PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J. 2008. Vol. 54. P. 428–439. doi: 10.1111/j.1365-313X.2008.03424.x.