Polymorphism of microsatellite loci in feral populations and commercial varieties of oilseed rape (Brassica napus L.)
Abstract
Aim. The aim of the work was to compare the polymorphism of commercial varieties and populations of B. napus growing outside cultivation to assess the genetic diversity of feral rapeseed populations in Belarus. Methods. The study assessed genetic diversity according to the data of 7 microsatellite loci genotyping. Results. The results indicate a greater genetic diversity in feral oilseed rape populations. An analysis of the structure of the genotypes distribution in the STRUCTURE software showed the division into three clusters – commertial varieties, feral populations and samples of B. rapa. Conclusions. The established genetic divergence between feral populations and commercial varieties indicates that feral oilseed rape is able to maintain persistent populations in Belarus. In practice, this should be taken into account when assessing the environmental risk when transgenic rape is released into the environment. And in the cultivation of transgenic rapeseed, special attention should be paid to measures to prevent the occurrence of its free-growing populations.
Keywords: oilseed rape, feral populations, microsatellite loci, genetic diversity.
References
Song K., Osborn T. Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome. 1992. Vol. 35, № 6. P. 992–1001.
Mihailova E.V., Kuluev B.R., Haziahmetov R.M. Ocenka vozmozhnosti gibridizacii geneticheski modificirovannogo rapsa c rodstvennymi netransgennymi rasteniyami. Ekologicheskaya genetika. 2015. Vol. 13, No 2. P. 100–117. [in Russian]
Zou J., Fu D., Gong H., Qian W., Xia W., Pires J.C., Li R., Long Y., Mason A.S., Yang T.J., Lim Y.P., Park B.S., Meng J. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa: Genomic alterations in introgressed Brassica napus. The Plant Journal. 2011. Vol. 68, № 2. P. 212–224. doi: 10.1111/j.1365-313X.2011.04679.x.
Ellstrand N.C. When Transgenes Wander, Should We Worry? Plant physiology. 2001. Vol. 125, № 4. P. 1543–1545. doi: 10.1104/pp.125.4.1543.
Lu B.-R., Snow A.A. Gene Flow from Genetically Modified Rice and Its Environmental Consequences. BioScience. 2005. Vol. 55, № 8. P. 669.
Rieseberg L.H., Kim S.C., Randel R.A., Whitney K.D., Gross B.L., Lexer C., Clay K. Hybridization and the colonization of novel habitats by annual sunflowers. Genetica. 2007. Vol. 129, No 2. P. 149–165. doi: 10.1007/s10709-006-9011-y.
Zybalov V.S. Upravlenie funkciej agrocenozov. Rol' promezhutochnyh posevov i polikul'tur. Sel'skohozyajstvennaya biologiya. 2002. № 1. Р. 3–10. [in Russian]
Saji H., Nakajima N., Aono M., Tamaoki M., Kubo A., Wakiyama S., Hatase Y., Nagatsu M. Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ Biosafety Res. 2005. Vol. 4, № 4. P. 217–222. doi: 10.1051/ebr:2006003/.
Schulze J., Frauenknecht T., Brodmann P., Bagutti C. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland. PloS one. 2014. Vol. 9, № 12. P. e114477. doi: 10.1371/journal.pone.0114477.
Belter A. Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion. Genes (Basel). 2016. Vol. 7, № 1. P.E3. doi: 10.3390/genes7010003.
Aono M., Wakiyama S., Nagatsu M., Kaneko Y., Nishizawa T., Nakajima N., Tamaoki M., Kubo A., Saji H. Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan. GM Crops. 2011. Vol. 2, № 3. P. 201–210. doi: 10.4161/gmcr.2.3.18931.
Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012. Vol. 28, № 19. P. 2537–2539. doi: 10.1093/bioinformatics/bts460.
DARwin software (2006). URL: http://darwin.cirad.fr/darwin (Last accessed: 12.12.2018).
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005. Vol. 14, No. 8. P. 2611–2620.
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000. Vol. 155, No. 2. P. 945–959.
Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. 2012. Vol. 4, No. 2. P. 359–361.