Identification of putative origin of Iris pumila L. karyotype

  • M. O. Twardovska
  • I. O. Andreev
  • V. A. Kunakh

Abstract

Aim. The study was aimed at cytogenetic analysis of Iris pumila, I. attica, and I. pseudopumila, comparative study of the karyotypes of these species, as well as identification of putative origin of I. pumila karyotype. Methods. Cytogenetic analysis of root apical meristem, determination of chromosome number in mitotic metaphase plates, anaphase analysis. Results. The chromosome numbers observed were 2n=32 for I. pumila plants from different localities in Ukraine and 2n=16 for I. attica and I. pseudopumila plants from Greece and Italy, respectively. Some of the plants were mixoploids, the smallest proportion of mixoploids was in I. pseudopumila (10.9%) and the largest in I.pumila from all studied populations (60-80%). Anaphase analysis showed the presence of chromosomal aberrations in 2.6% of cells in roots of I. pseudopumila seedlings. The highest level of structural chromosomal aberrations (9.2%) was found in root apical meristem cells of I. pumila seedlings. Conclusions. The chromosome number was established as 2n=32 for I.pumila plants and 2n=16 for I. attica and I. pseudopumila plants. The high level of mixoploidy (60–80% of mixoploid plants) and anaphase chromosomal aberrations (up to 9.2%) was found in apical meristem of I. pumila seedlings. The amphidipiloid nature of I. pumila was established; the karyotype of the species could be formed as a result of a combination of chromosome sets from hypothetical ancestral species I. attica and I. pseudopumila.

Keywords: Iris pumila L., Iris attica Boiss. & Heldr., Iris pseudopumila Tineo, chromosome number, amphidiploid, mixoploidy.

References

Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013. Vol. 110. P. 99–104. doi: 10.1038/hdy.2012.79

Alix K., Gerard P.R., Schwarzacher T., Heslop-Harrison J.S. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann. Bot. 2017. Vol. 120. P. 183–194. doi: 10.1093/aob/mcx079

Levin D.A. The role of chromosomal change in plant evolution. New York: Oxford University Press, 2002. 230 p.

Оtto S.P. The evolutionary consequences of polyploidy. Cell. 2007. Vol. 131. P. 452–462. doi: 10.1016/j.cell.2007.10.022

Ramsey J., Schemske D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998. Vol. 29. P. 467–501. doi: 10.1146/annurev.ecolsys.29.1.467

Robertson A., Rich T.C., Allen A.M., Houston L., Roberts C., Bridle J.R., Harris S.A., Hiscock S.J. Hybridization and poly-ploidy as drivers of continuing evolution and speciation in Sorbus. Mol. Ecol. 2010. Vol. 19. P. 1675–1690. doi: 10.1111/j.1365-294X.2010.04585.x

Alsayied N., Fernández J.A., Schwarzacher T., Heslop-Harrison J.S. Diversity and relationships of Crocus sativus and its rela-tives analysed by inter-retroelement amplified polymorphism (IRAP). Ann. Bot. 2015. Vol. 116. P. 359–368. doi: 10.1093/aob/mcv103

Rodionov A.V. Poliploidiia i mezhvidovaia gibridizatsiia v evoliutsii tsvetkovykh rasteniy. Vavilovskii zhurnal genetiki i seleksii. 2013. Vol. 17, No 4/2. P. 916–929. [in Russian]

Xiong Z., Gaeta R.T., Pires J.C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. 2011. Vol. 108. P. 7908–7913. doi: 10.1073/pnas.1014138108

Udall J.A., Wendel J.F. Polyploidy and crop improvement. Crop Sci. 2006. Vol. 46. P. 3–14. doi: 10.2135/cropsci2006.07.0489tpg

Van de Peer Y., Mizrachi E., Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017. Vol. 18. P. 411–424. doi: 10.1038/nrg.2017.26

Jiao Y., Wickett N.J., Ayyampalayam S., Chanderbali A.S., Landherr L., Ralph P. E., Tomsho L.P. Hu Y., Liang H., Soltis P.S., Soltis D.E., Clifton S.W., Schlarbaum S.E., Schuster S.C., Ma H., Leebens-Mack J., de Pamphilis C.W. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011. Vol. 473. P. 97–100. doi: 10.1038/nature09916

D’Hont A., Denoeud F., Aury J.-M., Baurens F.-C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012. Vol. 488. P. 213–217. doi: 10.1038/nature11241

Husband B.C., Baldwin S.J., Suda J. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Leitch I.J., Greilhuber J., Dolezel J., Wendel J.F., eds. Plant genome diversity. 2: Physical structure, behaviour and evolution of plant genomes. Dordrecht: Springer. 2013. P. 255–276. doi: 10.1007/978-3-7091-1160-4_16

Weiss-Schneeweiss H., Emadzade K., Jang T.S., Schneeweiss G.M. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 2013. Vol. 140. P. 137–150. doi: 10.1159/000351727

Salman-Minkov A., Sabath N., Mayrose I. Whole-genome duplication as a key factor in crop domestication. Nature Plants. 2016. Vol. 2. P. 1–4. doi: 10.1038/nplants.2016.115

Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci., U.S.A. 2011. Vol. 108. P. 7096–7101. doi: 10.1073/pnas.1016631108

Herben T., Suda J., Klimesova J. Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Ann. Bot. 2017. Vol. 120. P. 341–349. doi: 10.1093/aob/mcx009

Badaeva E.D., Salina E.A. Struktura genoma i khromosomnyj analiz rastenij. Vavilovskii zhurnal genetiki i seleksii. 2013. Vol. 17, No 4/2. P. 1017–1042.

Simonet M. Nouvelles recherches cytologiques et génétiques chez les Iris. Ann. Sci. Nat. Bot. 1934. Vol. 16. P. 229–383.

Mitra J. Karyotype analysis of bearded iris. Bot. Gaz. 1956. Vol. 117. P. 265–293.

Twardovska M.O., Kunakh V.A. In vitro culture initiation of Iris pumila L. Plant introduction. 2013. No 3. P. 29–33.

Kunakh V.A., Levenko B.A. Modifikaciia metoda davlenykh preparatov dlia izucheniia khromosom v kletkakh kul'tury tkanej rastenij. Cytol. Genet. (Tsitologiya i genetika). 1975. Vol. 9, No 1. P. 56–60.

Plokhinskij N.A. Biometriia: uchebnoe posobie. Izdanie 2-e. Moskva: Izd-vo MGU, 1970. 367 p.

Twardovska M.O., Andreev I.O., Kunakh V.A. Intraspecific chromosomal polymorphism of Iris pumila L. from the territory of Ukraine. Cytol. Genet. 2015. Vol. 49, No 5. P. 322–327. doi: 10.3103/S0095452715050096

Twardovska M.O., Andreev I.O., Kunakh V.A. Introduction into in vitro culture and cytogenetic analysis of Iris attica Boiss. & Heldr. and Iris pseudopumila Tineo plants. Visn. ukr. tov. genet. sel. 2018. T. 16, No 2. Р. 203–211. doi: 10.7124/visnyk.utgis.16.2.1058

Randolph L.F., Mitra J. Karyotypes of Iris pumila and related species. Am. J. Bot. 1959. Vol. 46, No 2. P. 93–102. doi: 10.2307/2439464.

Kunakh V.A. Biotechnology of medicinal plants. Genetic, physiological and biochemical basis. Kyiv: Logos, 2005. 724 p.

Anderson E. The species problem in Iris. Ann. Missouri Bot. Gard. 1936. Vol. 23. P. 457–509.

Lim K.Y., Matyasek R., Kovarik A., Leitch A. Parental Origin and Genome Evolution in the allopolyploid Iris versicolor. Ann. Bot. 2007. Vol. 100. P. 219–224. doi: 10.1093/aob/mcm116

Skalicka K., Lim K.Y., Matyasek R., Matzke M., Leitch A.R., Kovarik A. Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic allotetraploid tobacco. New Phytologist. 2005. Vol. 166. P. 291–303. doi: 10.1111/j.1469-8137.2004.01297.x

Hasterok R., Wolny E., Kulak S., Zdziechiewicz A., Maluszynska J., Heneen W.K. Molecular cytogenetic analysis of Brassica rapa–Brassica oleracea var. alboglabra monosomic addition lines. Theor. Appl. Genet. 2005. Vol. 111. P. 196–205. doi: 10.1007/s00122-005-1942-7

Soltis D.E., Soltis P.S., Pires J.C., Kovarik A., Tate J.A., Mavrodiev E. Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol. J. Linn. Soc. 2004. Vol. 82. P. 485–501. doi: 10.1111/j.1095-8312.2004.00335.x

Abbott R.J., Lowe A.J. Origins, establishment and evolution of two new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol. J. Linn. Soc. 2004. Vol. 82. P. 467–474. doi.org/10.1111/j.1095-8312.2004.00333.x

Soltis D.E., Soltis P.S. Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 1999. Vol. 14. P. 348–352. doi: 10.1016/s0169-5347(99)01638-9

Wendel J.F. Genome evolution in polyploids. Plant Mol. Biol. 2000. Vol. 42. P. 225–249. doi: 10.1007/978-94-011-4221-2_12