Plant β-tubulin phosphorylation on Ser172 as canonical suppressing factor of microtubule growth
Abstract
Aim. The estimation of potential role of plant β-tubulin Ser172 phosphorylation for correct function of microtubules and cell division due to selection of protein kinases, most probable associated with phosphorylation of Ser172 in Arabidopsis thaliana (L.) Heynh. Methods. Literature and database search. Comparison of protein sequences and structures: multiple sequence alignment, phylogenetic profiling, protein structure modeling, etc. Results. Comparison of Ser172 site region from all known β-tubulins from Homo sapiens, Sus scrofa, Saccharomyces cerevisiae, Drosophila melanogaster and A. thaliana confirms its significant similarity. Joint clusterization of all Ser172 site regions (in S±10 a.a. format) reveals that plant site is most similar to Ser172±10 fragment of β-tubulin from S. cerevisiae. At the same time, sequences and catalytic domain structures of cyclin-dependent kinases 1 and YAK1-related kinases (MNB/DYRK1a/YAK1) associated with Ser172 phosphorylation, found maximal similarity in A. thaliana and S. cerevisiae. Сonclusions. The results confirm similarity of amino acid environment of Ser172 in β-tubulin isotypes in human, pig, fruit fly, yeast and arabidopsis. This suggests similar effect of β-tubulin phosphorylation at Ser172 for inhibition of microtubule assembly onto their protofilaments and its association with CDK1 and YAK1-related protein kinases. Similarity of Ser172 sites and associated protein kinases, allows us to expect similar effect of this modification on structure of microtubules in A. thaliana and S. cerevisiae.
Keywords: β-tubulin, Ser172, phosphorylation, CDK1, DYRK1, MNB, YAK1.
References
Goodman D.P.B., Rasmussen H., DiBella F., Guthrow C.E. Jr. Cyclic adenosine 3',5'-monophosphate-stimulated phosphoryla-tion of isolated neurotubule subunits. Proc. Natl. Acad. Sci. USA. 1970. Vol. 67. P. 652–659.
Murray A.W., Froscio M. Cyclic adenosine 3':5'-monophosphate and microtubule function: specific interaction of the phos-phorylated protein subunits with a soluble brain component. Biochem. Biophys. Res. Commun. 1971. Vol. 44. P. 1089–1095.
Eipper B.A. Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. Proc. Natl. Acad. Sci. USA. 1972. Vol. 69. P. 2283–2287.
Caudron F., Denarier E., Thibout-Quintana J.C., Brocard J., Andrieux A., Fourest-Lieuvin A. Mutation of Ser172 in yeast β-tubulin induces defects in microtubule dynamics and cell division. PLoS One. 2010. Vol. 5 (10). e13553. doi: 10.1371/journal.pone.0013553.
Wloga D., Joachimiak E., Fabczak H. Tubulin post-translational modifications and microtubule dynamics. Int. J. Mol. Sci. 2017. Vol. 18 (10). P. 2207. doi: 10.3390/ijms18102207.
Fourest-Lieuvin A., Peris L., Gache V., Garcia-Saez I., Juillan-Binard C., Lantez V., Job D. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell. 2006. Vol. 17. P. 1041–1050. doi: 10.1091/mbc.e05-07-0621.
Abeyweera T.P., Chen X., Rotenberg S.A. Phosphorylation of α6-tubulin by protein kinase Cα activates motility of human breast cells. J. Biol. Chem. 2009. Vol. 284 (26). P. 17648–17656. doi: 10.1074/jbc.M902005200.
Yu I., Garnham C.P., Roll-Mecak A. Writing and reading the tubulin code. J. Biol. Chem. 2015. Vol. 290 (28). P. 17163–17172. doi: 10.1074/jbc.R115.637447.
Nogales E., Whittaker M., Milligan R.A., Downing K.H. High-resolution model of the microtubule. Cell. 1999. Vol. 96. P. 79–88. doi: 10.1016/S0092-8674(00)80961-7.
Inclán Y.F., Nogales E. Structural models for the self-assembly and microtubule interactions of γ-, δ- and ε-tubulin J. Cell Sci. 2001. Vol. 114 (Pt 2). P. 413–422.
Ori-McKenney K.M., McKenney R.J., Huang H.H., Li T., Meltzer S., Jan L.Y., Vale R.D., Wiita A.P., Jan Y.N. Phosphoryla-tion of β-tubulin by the down syndrome kinase, minibrain/DYRK1a, regulates microtubule dynamics and dendrite morpho-genesis. Neuron. 2016. Vol. 90 (3). P. 551–563. doi: 10.1016/j.neuron.2016.03.027.
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucl. Acids Res. 2018. Vol. 46 (5). P. 2699. doi: 10.1093/nar/gky092.
Lee M.M., Chan M.K., Bundschuh R. SIB-BLAST: a web server for improved delineation of true and false positives in PSI-BLAST searches. Nucl. Acids Res. 2009. Vol. 37 (1–2). W53–W56. doi: 10.1093/nar/gkp301.
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X. version 2.0. Bioinformatics. 2007. Vol. 23 (21). P. 2947–2948. doi: 10.1093/bioinformatics/btm404.
Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: A sequence logo generator. Genome Res. 2004. Vol. 14 (6). P. 1188–1190. doi: 10.1101/gr.849004.
Atteson K. The performance of neighbor-joining algorithms of phylogeny reconstruction. Lecture Notes Comp. Sci. 1997. Vol. 1276. P. 101–110.
Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016. Vol. 33 (7). P. 1870–1874. doi: 10.1093/molbev/msw054.
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modeling of protein structures and complexes. Nucl. Acids Res. 2018. Vol. 46 (W1). W296-W303. doi: 10.1093/nar/gky427.
Wood D.J., Korolchuk S., Tatum N.J., Wang L.Z., Endicott J.A., Noble M., Martin M.P. Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chem. Biol. 2019. Vol. 26 (1). P. 121–130. e5. doi: 10.1016/j.chembiol.2018.10.015.
Karpov P., Raevsky A., Korablyov M., Blume Ya. Identification of plant homologues of Dual Specificity Yak1-Related Kinases. Comput. Biol. J. 2014. Vol. 12 (ID 909268). P. 1–14. doi: 10.1155/2014/909268.
Kim K., Cha J.S., Cho Y.S., Kim H., Chang N., Kim H.J., Cho H.S. Crystal structure of human Dual-specificity Tyrosine-Regulated Kinase 3 reveals new structural features and insights into its auto-phosphorylation. J. Mol. Biol. 2018. Vol. 430 (10). P. 1521–1530. doi: 10.1016/j.jmb.2018.04.001.
Ramkumar A., Jong B.Y., Ori-McKenney K.M. ReMAPping the microtubule landscape: how phosphorylation dictates the activities of microtubule-associated proteins. Dev. Dyn. 2018. Vol. 247 (1). P. 138–155. doi: 10.1002/dvdy.24599
Duong-Ly K.C., Peterson J.R. The human kinome and kinase inhibition. Curr. Protoc. Pharmacol. 2013. Chapter 2. Unit 2.9. doi: 10.1002/0471141755.ph0209s60.