The problem of plants resistance to herbicides – inhibitors of acetolactate synthase
Abstract
Aim. The purpose of the work is to analyze the available literature data associated with the emergence of resistance to herbicides ALS inhibitors. Results. Target resistance to herbicides ALS inhibitors is a consequence of genetic mutations due to the replacement of one amino acid with another in the enzyme polypeptide. The article deals with data on the action of herbicides ALS inhibitors on the functioning of the enzyme and its modification in the presence of mutations that predispose the resistance to herbicides ALS inhibitors. Brief description of the structural features of the binding of various classes of herbicides inhibitors ALS with the target enzyme and the modification of the cofactors (thiamine diphosphate and flavin adenine dinucleotide) is presented. Conclusions. Studies of recent decades have led to an increase in knowledge about the action characteristics of herbicides belonging to different classes of ALS inhibitors and the causes of resistance. The obtained results are the basis for better understanding of the mechanisms of resistance to herbicides and the development of ways to overcome them.
Keywords: herbicides, acetolactate synthase, resistance, gene mutation.
References
Lonhienne T., Garcia M.D., Pierens G., Mobli M., Nouwens A., Guddat L.W. Structural insights into the mechanism of inhibi-tion of AHAS by herbicides. PNAS Latest Articles. 2018. P. 1–10. doi: 10.1073/pnas.1714392115.
Heap I. The International Survey of Herbicide Resistant Weeds. Online. Internet. Tuesday, February 19, 2019. URL: www.weedscience.org (Last accessed: 2.19.2019).
Guralchuk Zh.Z., Morderer Ye.Yu. Problema rezystentnosti roslyn do herbitsydiv: henetychnyy ta metabolichnyy aspekty. Faktory eksperymental’noyi evolyutsiyi orhanizmiv. 2015. V. 16. P. 100–104. [in Ukrainian]
Mallory-Smith C.A., Thill D.C., Dial M.J. Identification of herbicide resistant prickly lettuce (Lactuca serriola). Weed Tech-nol. 1990. Vol. 4. P. 163–168.
Tranel P.J., Wright T.R., Heap I.M. Mutations in herbicide-resistant weeds to ALS inhibitors. URL: http://www.weedscience.com (Last accessed: 12.2.2019).
Tranel P.J., Wright T.R. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 2002. Vol. 50. P. 700–712. https://doi.org/10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2.
Yu Q., Powles S.B. Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag. Sci. 2014. Vol. 70. P. 1340–1350. doi: 10.1002/ps.37.
Saari L.L., Cotterman J.C., Thill D.C. Resistance to acetolactate synthase inhibiting herbicides. Herbicide Resistance in Plants: Biology and Biochemistry / S.B. Powles and J.A.M. Holtum, eds. Ann Arbor. MI: Lewis, 1994. P. 83–139.
Liu W., Yuan G., Du L., Guo W., Li L., Bi Y., Wang J. A novel Pro197Glu substitution in acetolactate synthase (ALS) confers broad-spectrum resistance across ALS inhibitors. Pestic. Biochem. Physiol. 2015. Vol. 117. P. 31–38. http://dx.doi.org/10.1016/j.pestbp.2014.10.005.
Sibony M., Rubin B. Molecular basis for multiple resistance to acetolactate synthase inhibiting herbicides and atrazine in Ama-ranthus blitoides (prostrate igweed). Planta. 2003. Vol. 216. P. 1022–1027. doi: 10.1007/s00425-002-0955-6.
Boutsalis P. Resistance to acetolactate synthase-inhibiting herbicides in Sonchus oleraceus, Sisymbrium orientale and Brassica tournefortii: Thesis of Doct. Phylosophy. Univ. Adelaide, 1996. 173 p.
Huang Z., Chen J., Zhang Ch., Huang H., Wei Sh., Zhou X., Chen J., Wang X. Target-site basis for resistance to imazethapyr in redroot amaranth (Amaranthus retroflexus L.). Pest. Biochem. Physiol. 2015. http://dx.doi.org/10.1016/j.pestbp.2015.10.011.
Li M., Yu Q., Han H., Vila-Aiub M., Powles S.B. ALS herbicide resistance mutations in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Manag. Sci. 2013. Vol. 69. P. 689–695. doi: 10.1002/ps.3419.
Yu Q., Han H., Vila-Aiub M.M., Powles S.B. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. J. Exp. Bot. 2010. Vol. 61. P. 3925–3934. doi: 10.1093/jxb/erq205.
Liu W., Bai Sh., Jia S., Guo W., Zhang L., Li W., Wang J. Comparison of ALS functionality and plant growth in ALS-inhibitor susceptible and resistant Myosoton aquaticum L. Pest. Biochem. Physiol. 2017. Vol. 142. P. 111–116. doi: 10.1016/j.pestbp.2017.03.008.
Vila-Aiub M.M., Neve P., Powles S.B. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 2009. Vol. 184. P. 751–767. doi: 10.1111/j.1469-8137.2009.03055.x.
Lee Y.-T., Duggleby R.G. Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and re-constitution with its catalytic subunit. Biochemistry. 2001. Vol. 40. P. 6836–6844. doi: 10.1021/bi002775q.
Endo M., Shimizu T., Fujimori T., Yanagisawa S., Toki S. Herbicide-resistant mutations in acetolactate synthase can reduce feedback inhibition and lead to accumulation of branched-chain amino acids. Food and Nutrition Sci. 2013. Vol. 4. P. 522–528. http://dx.doi.org/10.4236/fns.2013.45067.
Preston C., Stone L.M., Rieger M.A., Baker J. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola. Pestic. Biochem. Physiol. 2006. Vol. 84, No. 3. P. 227–235. doi: 10.1016/j.pestbp.2005.07.007.
Eberlein C.V., Guttieri M.J., Berger P.H., Fellman J.K., Mallory-Smith C.A., Thill D.C., Baerg R.J., Belknap W.R. Physio-logical consequence of mutation for ALS-inhibitor resistance. Weed Sci. 1999. Vol. 47, No. 4. P. 383–392.
Eberlein C.V., Guttieri M.J., Mallory-Smith C.A., Thill D.C., Baerg R.J. Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci. 1997. Vol. 45, No. 2. P. 212–217.
Ashigh J., Tardif F.J. An Ala205Val substitution in acetohydroxyacid synthase of eastern black nightshade (Solanum ptychan-thum) Reduces Sensitivity to Herbicides and Feedback Inhibition. Weed Sci. 2007. Vol. 55. P. 558–565. doi: 10.1614/WS-07-054.1.
Cross R.B., McCarty L.B., McElroy J.S., Tharayil N., Bridges W.C. Comparison of enzyme and growth characteristics in ALS-inhibitor susceptible and resistant annual bluegrass (Poa annua) biotypes. Weed Sci. 2015. Vol. 63, No. 1. P. 220–228. doi: 10.1614/WS-D-14-00091.1.
McCourt J.A., Pang S.S., King-Scott J., Duggleby R.G., Guddat L.W. Herbicide binding sites revealed in the structure of Arabidopsis thaliana acetohydroxyacid synthase. Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. P. 569–573. doi: 10.1073/pnas.0508701103.
Duggleby R.G., McCourt J.A., Guddat L.W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 2008. Vol. 46. P. 309–324. doi: 10.1016/j.plaphy.2007.12.004.
McCourt J.A., Pang S.S., Duggleby R.G., Guddat L.W. Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochem. 2005. Vol. 44. P. 2330–2338. doi: 10.1021/bi047980a.
Mendel S., Elkayam T., Sella C., Vinogradov V., Vyazmensky M., Chipman D.M., Barak Z. Acetohydroxyacid synthase: a proposed structure for regulatory subunits supported by evidence from mutagenesis. J. Mol. Biol. 2001. Vol. 307. P. 465–477. doi: 10.1006/jmbi.2000.4413.
Chang A.K., Duggleby R.G. Herbicide-resistant forms of Arabidopsis thaliana Acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem. J. 1998. Vol. 333. P. 765–777.
Garcia M.D., Nouwens A., Lonhienne T.G., Gudda L.W. Comprehensive understanding of acetohydroxyacid synthase inhibi-tion by different herbicide families. PNAS Latest Articles. 2016. P. 1–10. doi: 10.1073/pnas.1616142114.