Biomass as a factor contributing to winter wheat yield increase

  • V. V. Morgun
  • G. A. Priadkina
  • O. O. Stasik
  • O. V. Zborіvskaіa

Abstract

Aim. The search of factors influencing grain productivity, based on the comparison of the mass of dry matter in the aboveground parts of modern winter wheat varieties at the early stages of ontogenesis. Methods. Morphometric determination of biomass of the above-ground plant parts. Results. The varieties and lines of winter wheat with higher yields exceeded the less productive ones by the number of shoots per 1 m2 of soil on 8–12 % and by the dry matter weight of the above-ground plant parts on 23–34 % at the early stages of spring vegetation. According to two-year experiments, it was established a linear positive correlation (r = 0.85–0.86) of the dry matter weight of the above-ground plant parts per 1 m2 of soil during the period of stem elongation (BBCH 31-49) with the yield. Conclusions. The close relationship between yield and dry matter weight of the above-ground plant parts at the early stages of spring vegetation makes it possible to rank winter wheat varieties by potential yield.

Keywords: Triticum aestivum L., grain productivity, biomass, early stages of ontogenesis.

References

Morgun V.V., Kiriziy D.A. Prosrects and modern strategies of wheat physiological traits improvement of increasing productiv-ity. Physiology and Biochemistry of Cultivated Plants. 2012. 44 (6). P. 463–483. [in Ukrainian]

Parry M.A.J., Reynolds M., Salvucci M.E. Raising yield potential in wheat. II. Increasing photosynthetic capacity and effi-ciency. J. Exp. Bot. 2011. Vol. 62 (4). P. 453–467. https://doi.org/10.1093/jxb/erq304.

Morgun V.V., Pryadkina G.A. Photosynthesis efficiency and perspectives of winter wheat productivity increasing. Plant Physiology and Genetics. 2014. 46 (4). P. 279–301. [in Russian]

Slafer G., Araus J.L., Richards R.A. Physiological traits that increase the yield potential of wheat. Wheat. Ecology and physi-ology of yield determination / Satorre E.H., Slafer G.A., eds. New York: Food Products Press, 1999. P. 379–415.

Reynolds M., Bonnettі D., Chapman S.C., Furbank R.T., Manйs Y., Mather D.E., Parry M.A.J. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J. Exp. Bot. 2011. Vol. 62 (2). P. 439–452. https://doi.org/10.1093/jxb/erq311.

Li Z.K., Jiang X.L., Peng T., Shi C.L., Han S.X., Tian B., Zhu Z.L., Tian J.C. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.). Gen. Molec. Res. 2014. Vol. 13 (1). P. 1412–1424. http://dx.doi.org/10.4238/2014.February.28.14.

Derkx A.P., Orford S., Griffiths S., Foulkes M.J., Hawkesford M.J. Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. J. Integr. Plant Biol. 2012. Vol. 54. P. 555–566. https://doi.org/10.1111/j.1744-7909.2012.01144.x.

Pedro A., Savin R., Habash D.Z., Slafer G.A. Physiological attributes associated with yield and stability in selected lines of a durum wheat population. Euphytica. 2011. Vol. 180. P. 195–208. doi: 10.1007/s10681-011-0352-y.

Litvinenko N.A., Solomonov R.V., Shcherbina Z.V. Formirovaniye biologicheskogo i khozyaystvennogo urozhaya u ozimykh liniy ot yarovo-ozimykh gibridov pshenitsy. Zroshuvane zemlerobstvo. 2015. 63. P. 118–124. [in Russian]

Xie Q., Mayes S., Sparkes D.L. Preanthesis biomass accumulation of plant and plant organs defines yield components in wheat. European J. Agron. 2016. Vol. 81. P. 15–26. https://doi.org/10.1016/j.eja.2016.08.007.

Pryadkina G.A., Zborovskaya A.V., Oksem V.P., Stasik О.О. Biomass formation at early stages of ontogeny and yield in high-yielding varieties of winter wheat. Bull. Kharkiv National Agrarian Univ. Series Biol. 2017. Vol. 1 (40). P. 119–126. [in Ukrainian]

Morhun V.V., Sanin Ye.V., Shvartau V.V., Omelianenko O.A. Sorty ta tekhnolohii vyroshchuvannia vysokykh urozhaiv ozy-moi pshenytsi. Klub 100 tsentneriv. Kyiv, 2011. 121 s. [in Ukrainian]

Zadoks J.C., Chang T.T., Konzak C.F. A decimal code for the growth stages of cereals. Weed Research. 1974. Vol. 14. P. 415–421.

Dospekhov B.A. Metodika polevogo opyta. Moskva: Kolos, 1973. 335 s. [in Russian]

Fischer R.A., Aguilar M. Yield potential in a dwarf spring wheat and the effect of carbon dioxide fertilization. Agronomy Journal. 1976. Vol. 68. P. 749–752.

Kromdijk J., Glowacka K., Leonelli L., Niyogi K.K., Clemente T.E., Long S.P. Improving photosynthesis and crop productiv-ity by accelerating recovery from photoprotection. Science. 2016. Vol. 354 (6314). P. 857–861. doi: 10.1126/science.aai8878.

Leonelli L., Erickson E., Lysk D., Niyogi K.K. Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J. 2016. Vol. 88 (3). P. 375–386. doi: 10.1111/tpj.13268a.

Ambavaram M.M.R., Ali A., Ryan K.P., Peoples O., Shell K.D., Somleva M.N. Novel transcription factors PvBMY1 and PvBMY3 increase biomass yield in greenhouse-grown switchgrass (Panicum virgatum L.). Plant Science. 2018. doi: 10.1016/j.plantsci.2018.04.003.

Busemeyer L., Ruckelshausen A., Mцller K, Melchinger A.E., Alheit K.V., Maurer H.P., Hahn V., Weissmann E.A., Reif J.C., Wьrschum T. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation. Sci-entific Reports. 2013. 3. P. 2442. doi: 10.1038/srep02442.

Reif J.C., Maurer H.P., Korzun V., Ebmeyer E., Wьrschum T. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor. Appl. Genet. 2011. Vol. 123. P. 283–292. doi:10.1007/s00122-011-1583-y.