The role of allelic and nonallelic interactions of genes in the mechanism of heterosis

  • S. G. Hablak
  • Ya. A. Abdullaeva
  • L. O. Ryabovol
  • Ya. S. Ryabovol

Abstract

Aim. Studying the heterosis effect from the point of view of allelic and nonallelic gene interaction in F1 hybrids from crossing the arabidopsis ecotypes Col-0 and La-0. Methods. Hybridological method of crossing mutant lines and analysis of the inheritance of the signs of the root system. Results. When plants of different races Col-0 and La-0 cross in the F2 generation, polymeric interaction of genes occurs. In that case splitting in F2 goes in the ratio 15: 1. At the same time, hybrids of the first generation exhibit heterosis, which is manifested in a more powerful development of a rosette of leaves in comparison with the initial forms. Conclusions. The emergence of heterosis in hybrids of the first generation can be explained on the basis of the allelic and nonallelic gene interaction, which creates a favorable combination of genes during hybridization, causing the best manifestation of an economically valuable trait.

Keywords: Arabidopsis thaliana (L.) Heynh., heterosis, gene, mutation, race.

References

Davenport C.B. Degeneration, albinism and inbreeding. Science. 1908. Vol. 28. Р. 454–455.

Hull. F.H. Reccurent selection for overdominance. Iowa State College Press. Ames. 1952. Р. 451–474.

Hulyaev G.V., Genetics. M.: Kolos, 1984. 351 р. [in Russian]

Duvick D.N. Biotechnology in the 1930s: the development of hybrid maize. Nat. Rev. Genet. 2001. Vol. 2. Р. 69–74.

Troyer A.F., Wellin E.J. Heterosis Decreasing in Hybrids: Yield Test Inbreds. Crop Science. 2009. Vol. 49. Р. 1969–1976.

Bingham E.T., Groose R.W., Woodfield D.R., Kidwell K.K. Complementary gene interactions in alfalfa are greater in auto-tetraploids than diploids. Crop Sci. 1994. Vol. 34. Р. 823–829.

Springer N., Stupar R. Allelic variation and heterosis in maize: How do two halves make more than whole? Genome Res. 2007. Vol. 17. Р. 264–275.

Birchler J.A., Veitia R.A. The gene balance hypothesis: Implications for gene regulation, quantitative traits and evolution. New Phytol. 2010. Vol. 186 (1). Р. 54–62.

Abramov Z. Workshop on genetics. L.: Agropromizdat, 1992. 250 р. [in Russian]

Birchler J.A., Auger D.L., Riddle N.C. In search of the molecular basis of heterosis, The Plant Cell. 2003. Vol. 15 (10). Р. 2236–2239.

Khotyleva A.V., Kilchevsky A.V., Shapturenko M.N. Theoretical aspects of heterosis, Vavilovskii Zhurnal Genetics and Se-lektsii. 2016. Vol. 20 (4). Р. 482–492. [in Russian]

Seed List. The Nottingham Arabidopsis Stock Centre. Nottingham: The University of Nottingham, 1994. 212 р.

Ivanov V.I. Radiobiology and genetics of Arabidopsis. Problems of space biology. 1974. Vol. 27. Р. 5–58. [in Russian]

Ezhova G.A., Lebedeva O.V., Ogarkova O.A. Arabidopsis thaliana is a model object of plant genetics. М.: MAX Press, 2003. 314 р. [in Russian]

Petrov A.P., Plotnikov V.A., Prokopenko L.I. Method of soil culture of Arabidopsis thaliana (L.) Heynh. and the problem of minimizing paratypic variances. Genetics. 1973. Vol. 12 (2). Р. 83–88. [in Russian]

Dospekhov B.A. Methods of field experience. M.: Agropromizdat, 1985. 351 р. [in Russian]

Lakin G.F. Biometriya. M.: Vysh. shk., 1990. 352 р. [in Russian]

Glazko V.I., Glazko G.V. Glossary of terms in applied genetics and DNA technology, K.: IAB, 1999. 342 s. [in Russian]

Shumnyy V.K. Problemy genetiki rasteniy. Vestnik VOGiS. 2004. Vol. 8 (2). Р. 32–39 [in Russian]

Ayala F., Kayher D. Modern genetics. M.: Mir, 1988. 335 р. [in Russian]

Lobashev M.E. Genetics. L.: Leningrad State University, 1985. 485 р. [in Russian]