Development and studying of Triticum aestivum L. material with introgressions from Aegilops biuncialis Vis.
Abstract
Aim. The aim of the study was to develop and study T. aestivum material with introgressions from Ae. biuncialis. Methods. Quantitative traits of F4 lines from crossing wheat with Crimean accessions of Ae. biuncialis were studied. SDS and APAG electrophoreses of storage proteins were used to identify alleles at the Glu-1 and Gli-1 loci, including introgressed ones. Results. F4 lines from crosses of wheat with Ae. biuncialis showed a wide range of yield traits. Some lines had a clavate spike and a hairy leaf blade. Using storage proteins as genetic markers the presence of chromosome 1U was identified among the progeny of plants analyzed; some of them had translocation of arm 1UL. Lines with introgressions of chromosome 1M were not revealed. Conclusions. T. aestivum lines with introgressions from Ae. biuncialis were developed without amphidiploid production. Lines with chromosome 1U were selected, including lines with translocations of arm 1UL.
Keywords: Triticum aestivum L., Aegilops biuncialis Vis., introgression.
References
Schneider A., Molnár I., Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008. Vol. 163. P. 1–19. doi: 10.1007/s10681-007-9624-y.
Kilian B., Mammen K., Millet E., Sharma R., Graner A, Salamini F., Hammer K., Özkan H. Aegilops. Wild crops relatives: genomic and breeding resources. Ed. C. Kole. Berlin Heidelberg: Springer-Verlag. 2011. P. 1–76. doi: 10.1007/978-3-642-14228-4.
Molnár I., Gaspar L., Savari E., Dulai S., Hoffman B., Molnár-Láng M., Galiba G. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology. 2004. Vol. 31. P. 1149–1159. doi: 10.1071/FP03143.
Dulai S., Molnár I., Szopkó D., Darkó É., Vojtkó A., Sass-Gyarmati A., Molnár-Láng M. Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J. Plant Physiol. 2014. Vol. 171. P. 509–517. doi: 10.1016/j.jplph.2013.11.015.
Rakszegi M., Molnár I., Lovegrove A., Darkó É., Farkas A., Láng L., Bedö Z., Doležel J., Molnár-Láng M., Shewry P. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Frotniers in Plant Science. 2017. Vol. 8. Article 1529. doi: 10.3389/fpls.2017.01529.
Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., Kruppa K., Molnár-Láng M. Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat – Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome. 2014. Vol. 57. P. 61–67. doi: 10.1139/gen-2013-0204.
Molnár-Láng M., Linc G., Nagy E.D., Schneider A., Molnár I. Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. Acta Agronomica Hungarica. 2002. Vol. 50, No. 3. P. 303–311. doi: 10.1556/AAgr.50.2002.3.8.
Schneider A., Linc G., Molnár I., Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat – Aegilops biuncialis disomic addition lines. Genome. 2005. Vol. 48. P. 1070–1082. doi: 10.1139/g05-062.
Molnár I., Benavente E., Molnár-Láng M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum – Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome. 2009. Vol. 52. P. 156–165. doi: 10.1139/g08-114.
Tan F., Zhou J., Yang Z., Zhang Y., Pan L., Ren Z. Characterization of a new synthetic wheat – Aegilops biuncialis partial amphiploid. Afr. J. Biotech. 2009. Vol. 8, No. 14. P. 3215–3218. doi: 10.5897/AJB09.359.
Zhou J.P., Yao C.H., Yang E.N., Yin M.Q., Liu C., Ren Z.L. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genetics and Molecular Research. 2014. Vol. 13, No. 1. P. 660–669. doi: 10.4238/2014.January.28.11.
Okuno K., Ebana K., Noov B., Yoshida H. Genetic diversity and Central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genet. Res. Crop Evol. 1998. Vol. 45. P. 389–394. doi: 10.1023/A:1008660001263.
Monte J.V., De Nova P.J.G., Soler C. AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas. 2001. Vol. 135. P. 233–238. doi: 10.1111/j.1601-5223.2001.00233.x.
Kozub N.A., Sozinov I.A., Xynias I.N., Sozinov A.A. Allelic Variation at High-Molecular-Weight Glutenin Subunit Loci in Aegilops biuncialis Vis. Russian Journal of Genetics. 2011. Vol. 47, No. 9. P. 1078–1083. doi: 10.1134/S1022795411090092.
Kozub N.A., Sozinov I.A., Sozinov A.A. Identification of alleles at the gliadin loci Gli-U1 and Gli-Mb1 in Aegilops biuncialis Vis. Russian Journal of Genetics. 2012. Vol. 48, No. 4. P. 390–395. doi: 10.1134/S1022795412030052.
Kozub N.A., Sozinov I.A., Sobko T.A., Kolyuchii V.T., Kuptsov S.V., Sozinov A.A. Variation at storage protein loci in winter common wheat cultivars of the Central Forest-Steppe of Ukraine. Cytology and Genetics. 2009. Vol. 43, No. 1. P. 55–62. doi: 10.3103/S0095452717020050.
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. Vol. 227, No. 5259. P. 680–685. doi:10.1038/227680a0.
Garg M., Tanaka H., Tsujimoto H., Exploration of Triticeae seed storage proteins for improvement of wheat end-product quality. Breeding Sci. 2009. Vol. 59. P. 519–528. doi: 10.1270/jsbbs.59.519.
Garg M., Tsujimoto H., Gupta R.K., Kumar A., Kaur N., R. Kumar, Chunduri V., Sharma N.K., Chawla M., Sharma S., Mundey J.K. Chromosome specific substitution lines of Aegilops geniculata alter parameters of bread making quality of wheat. PLoS ONE. 2016. Vol. 11 (10). e0162350. doi: 10.1371/journal.pone.0162350.