Стовбуровий потенціал нової лінії клітин людини 4BL
Анотація
При отриманні клітинної лінії дослідників у першу чергу цікавлять такі характеристики як морфологія та імунофенотип, що дозволяє визначити приналежність клітин до того чи іншого типу та відповідно, окреслити галузі її застосування. Метою даної роботи було перевірити стовбуровий потенціал нової лінії клітин людини 4BL, яку отримано з периферійної крові здорового донора та дослідити її імунофенотип. Методи. Застосовували стандартні методи культивування, тест у напіврідкому агарі; стовбуровий потенціал перевіряли диференціюванням у жирову, кісткову і м’язову тканини. Імунофенотип клітин було проаналізовано на проточному цитофлуориметрі BD FACS Aria. Результати. Клітини лінії 4BL формують колонії, подібні до ембріоїдних тіл, при вирощуванні у напіврідкому агарі та здатні диференціюватися в остеогенному, адипогенному та міогенному напрямі при вирощуванні в індукційних середовищах. Понад 90 % популяції клітин лінії 4BL експресують маркери стовбурових клітин CD105 i CD73 та є негативними за маркерами гемопоетичних СК C90, CD45, CD34 і CD14. Також дані клітини не експресують маркер Oct 4. Висновки. Нова лінія клітин людини 4BL має стовбуровий потенціал та, ймовірніше за все, належить до мультипотентних негемопоетичних стовбурових клітин.
Ключові слова: клітинна лінія, стовбурові клітини, ембріоїдні тільця, диференціювання, цитофлуориметрія.Посилання
Tong Z., Solanki A., Hamilos A. et al. Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J. 2015. Vol. 34(8). P. 987–1008. doi: 10.15252/embj.201490756
Chen A., Ting S., Seow J., Reuveny S., Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem. Cell Res. Ther. 2014. Vol. 5(1). P. 1–12. doi: 10.1186/scrt401
Ramdasi S., Sarang S., Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int. J. Hematol. Oncol. Stem Cell Res. 2015. Vol. 9(2). P. 95–103.
Hu C., Li L. Two effective routes for removing lineage restriction roadblocks: from somatic cells to hepatocytes. Int. J. Mol. Sci. 2015. Vol. 16(9). P. 20873–20895. doi: 10.3390/ijms160920873
Périé S., Trollet C., Mouly V. et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol. Ther. 2014. Vol. 22(1). P. 219–225. doi: 10.1038/mt.2013.155
Feng R., Lengner C. Application of stem cell technology in dental regenerative medicine. Adv. Wound Care (New Rochelle). 2013. Vol. 2(6). P.296–305. doi: 10.1089/wound.2012.0375
Han F., Baremberg D., Gao J. et al. Development of stem cell-based therapy for Parkinson's disease. Transl. Neurodegener. 2015. Vol. 4(16). P. 1–13. doi: 10.1186/s40035-015-0039-8
Rezania A., Bruin J.E., Arora P. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 2014. Vol. 2(11). P. 1121–1133. doi: 10.1038/nbt.3033
Giri S., Bader A. A low-cost, high-quality new drug discovery process using patient-derived induced pluripotent stem cells. Drug Discov. Today. 2015. Vol. 20(1). P. 37–49. doi: 10.1016/j.drudis.2014.10.011
Khetani S.R., Berger D.R., Ballinger K.R. et al. Microengineered liver tissues for drug testing. World J. Stem Cells. 2015. Vol. 7(2). P. 461–469. doi: 10.1177/2211068214566939
King N.M., Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res. Ther. 2014. Vol. 5(4). P. 85. doi: 10.1186/scrt474
Lukash L. L., Yatsychina A. P., Kushniruk V. O., Pidpala O. V. Reprogrammirovanie somaticheskikh kletok vzroslogo cheloveka. Fakt. Exp. Evol. Org. 2011. Vol. 11. P. 493–498.
Akopyan H. R., Huleyuk N. L., Kushniruk V. O., Mykytenko D. O., Iatsyshyna A. P., Lukash L. L. Comparative analysis of the karyotype of new human cell line 4BL at long-term cultivation: Ploidy of the chromosomal set. Cytology and Genetics. 2013. Vol. 47(5). P. 305-317. doi: 10.3103/S0095452713050022
Macewicz L.L., Kushniruk V.O., Iatsyshyna A.P. et al. Correlation the level of mutagenesis with expression of reparative enzyme O6-metylhuanin DNA methyltransferase (MGMT) during establishment of cell lines in vitro. Biopolymers and cell. 2013. Vol. 29(6). P. 485 492. doi: 10.7124/bc.00083D
Kushniruk V. O., Ruban T. P., Lukash L. L. Morphological and growth peculiarities of new human cell line 4BL. Fakt. Exp. Evol. Org. 2013. Vol. 13. P. 315–319.
Freshney R.I. Culture of animal cells: a manual of basic technique and specialized applications, 6th ed. New Jersey, USA. 2010. 796 p. doi: 10.1002/9780470649367
Hamburger A.W. The human tumor clonogenic assay as a model system in cell biology. Int. J. Cell Cloning. 1987. Vol. 5(2). P. 89–107. doi: 10.1002/stem.5530050202
Amiri F., Halabian R., Salimian M. et al. Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones. 2014. Vol. 19(5). P. 657–666. doi: 10.1007/s12192-014-0491-x
Atlasi Y., Mowla S.J., Ziaee S.A., Bahrami A.R. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int. J. Cancer. 2007. Vol. 120(7). P. 1598–1602. doi: 10.1002/ijc.22508
Wang D., Lu P., Zhang H. et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget. 2014. Vol. 5(21). P. 10803–10815. doi: 10.18632/oncotarget.2506
Ode A., Schoon J., Kurtz A. et al. CD73/5'-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. Eur. Cell Mater. 2013. Vol. 25. P.37–47. doi: 10.22203/eCM.v025a03
Chatterjee D., Tufa D.M., Baehre H. et al. Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood. 2014. Vol. 123(4). P. 594–595. doi: 10.1182/blood-2013-09-524827
Kays S.K., Kaufmann K.B., Abel T. et al. CD105 is a surface marker for receptor-targeted gene transfer into human long-term repopulating hematopoietic stem cells. Stem Cells Dev. 2015. Vol. 24(6). P. 714–723. doi: 10.1089/scd.2014.0455
Rege T.A., Hagood J.S. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J. 2006. Vol. 20(8). P. 1045–1054. doi: 10.1096/fj.05-5460rev
Boxall S.A., Jones E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012. ID 975871. doi: 10.1155/2012/975871
Shablii V. A., Kuchma M. D., Kyryk V. M. et al. Mesenchymal and trophoblast immunophenotype of multipotent stromal cells from human placenta. Biopolym. Cell. 2014. Vol. 30(2). P. 118–121. doi: 10.7124/bc.000889
Kwon S.M., Lee J.H., Lee S.H. et al. Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of CD34 positive cells. PLoS One. 2014. Vol. 9(8). e106310. doi: 10.1371/journal.pone.0106310
Cyster J.G., Healy J.I., Kishihara K. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature. 1996. Vol. 381(6580). P. 325–328. doi: 10.1038/381325a0
Tarzi R.M., Liu J., Schneiter S. et al. CD14 expression is increased on monocytes in patients with anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis and correlates with the expression of ANCA autoantigens. Clin. Exp. Immunol. 2015. Vol. 181(1). P.65–75. doi: 10.1111/cei.12625