Stem potential of the new human cell line 4BL
Abstract
During generation of new cell line the researchers are primarily interested in such characteristics as morphology and immunophenotype, which allows attributing beloning of the cell to that or other type and accordingly outlining branches of its application. The aim of this research was to test the stem potential of the new cell line 4BL, which was derived from the peripheral blood of healthy donor and to investigate it`s immunophenotype. Methods. The standard cell cultivation and the soft agar test were used. Stem potential was checked by differentiation in the adypogenic, osteogenic and myogenic directions. Results. The 4BL cell lines form colonies similar to embryoid bodies when grown in semisolid agar and capable to differentiate into osteogenic, myogenic and adypohenic direction when grown in induction media. Over 90 % of the 4BL line cell population expressed stem cell markers CD105 and C73 and were negative for the hemopoietic cell markers CD90, CD45, C34 and CD14. Also these cells didn’t express Oct 4. Conclusions. The new human cell line 4BL has stem potential and, most likely, belongs to non-hemopoietic multipotent stem cells.
Keywords: cell line, stem cells, embryoid bodies, differentiation, flow cytometry.References
Tong Z., Solanki A., Hamilos A. et al. Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J. 2015. Vol. 34(8). P. 987–1008. doi: 10.15252/embj.201490756
Chen A., Ting S., Seow J., Reuveny S., Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem. Cell Res. Ther. 2014. Vol. 5(1). P. 1–12. doi: 10.1186/scrt401
Ramdasi S., Sarang S., Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int. J. Hematol. Oncol. Stem Cell Res. 2015. Vol. 9(2). P. 95–103.
Hu C., Li L. Two effective routes for removing lineage restriction roadblocks: from somatic cells to hepatocytes. Int. J. Mol. Sci. 2015. Vol. 16(9). P. 20873–20895. doi: 10.3390/ijms160920873
Périé S., Trollet C., Mouly V. et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol. Ther. 2014. Vol. 22(1). P. 219–225. doi: 10.1038/mt.2013.155
Feng R., Lengner C. Application of stem cell technology in dental regenerative medicine. Adv. Wound Care (New Rochelle). 2013. Vol. 2(6). P.296–305. doi: 10.1089/wound.2012.0375
Han F., Baremberg D., Gao J. et al. Development of stem cell-based therapy for Parkinson's disease. Transl. Neurodegener. 2015. Vol. 4(16). P. 1–13. doi: 10.1186/s40035-015-0039-8
Rezania A., Bruin J.E., Arora P. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 2014. Vol. 2(11). P. 1121–1133. doi: 10.1038/nbt.3033
Giri S., Bader A. A low-cost, high-quality new drug discovery process using patient-derived induced pluripotent stem cells. Drug Discov. Today. 2015. Vol. 20(1). P. 37–49. doi: 10.1016/j.drudis.2014.10.011
Khetani S.R., Berger D.R., Ballinger K.R. et al. Microengineered liver tissues for drug testing. World J. Stem Cells. 2015. Vol. 7(2). P. 461–469. doi: 10.1177/2211068214566939
King N.M., Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res. Ther. 2014. Vol. 5(4). P. 85. doi: 10.1186/scrt474
Lukash L. L., Yatsychina A. P., Kushniruk V. O., Pidpala O. V. Reprogrammirovanie somaticheskikh kletok vzroslogo cheloveka. Fakt. Exp. Evol. Org. 2011. Vol. 11. P. 493–498.
Akopyan H. R., Huleyuk N. L., Kushniruk V. O., Mykytenko D. O., Iatsyshyna A. P., Lukash L. L. Comparative analysis of the karyotype of new human cell line 4BL at long-term cultivation: Ploidy of the chromosomal set. Cytology and Genetics. 2013. Vol. 47(5). P. 305-317. doi: 10.3103/S0095452713050022
Macewicz L.L., Kushniruk V.O., Iatsyshyna A.P. et al. Correlation the level of mutagenesis with expression of reparative enzyme O6-metylhuanin DNA methyltransferase (MGMT) during establishment of cell lines in vitro. Biopolymers and cell. 2013. Vol. 29(6). P. 485 492. doi: 10.7124/bc.00083D
Kushniruk V. O., Ruban T. P., Lukash L. L. Morphological and growth peculiarities of new human cell line 4BL. Fakt. Exp. Evol. Org. 2013. Vol. 13. P. 315–319.
Freshney R.I. Culture of animal cells: a manual of basic technique and specialized applications, 6th ed. New Jersey, USA. 2010. 796 p. doi: 10.1002/9780470649367
Hamburger A.W. The human tumor clonogenic assay as a model system in cell biology. Int. J. Cell Cloning. 1987. Vol. 5(2). P. 89–107. doi: 10.1002/stem.5530050202
Amiri F., Halabian R., Salimian M. et al. Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones. 2014. Vol. 19(5). P. 657–666. doi: 10.1007/s12192-014-0491-x
Atlasi Y., Mowla S.J., Ziaee S.A., Bahrami A.R. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int. J. Cancer. 2007. Vol. 120(7). P. 1598–1602. doi: 10.1002/ijc.22508
Wang D., Lu P., Zhang H. et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget. 2014. Vol. 5(21). P. 10803–10815. doi: 10.18632/oncotarget.2506
Ode A., Schoon J., Kurtz A. et al. CD73/5'-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. Eur. Cell Mater. 2013. Vol. 25. P.37–47. doi: 10.22203/eCM.v025a03
Chatterjee D., Tufa D.M., Baehre H. et al. Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood. 2014. Vol. 123(4). P. 594–595. doi: 10.1182/blood-2013-09-524827
Kays S.K., Kaufmann K.B., Abel T. et al. CD105 is a surface marker for receptor-targeted gene transfer into human long-term repopulating hematopoietic stem cells. Stem Cells Dev. 2015. Vol. 24(6). P. 714–723. doi: 10.1089/scd.2014.0455
Rege T.A., Hagood J.S. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J. 2006. Vol. 20(8). P. 1045–1054. doi: 10.1096/fj.05-5460rev
Boxall S.A., Jones E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012. ID 975871. doi: 10.1155/2012/975871
Shablii V. A., Kuchma M. D., Kyryk V. M. et al. Mesenchymal and trophoblast immunophenotype of multipotent stromal cells from human placenta. Biopolym. Cell. 2014. Vol. 30(2). P. 118–121. doi: 10.7124/bc.000889
Kwon S.M., Lee J.H., Lee S.H. et al. Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of CD34 positive cells. PLoS One. 2014. Vol. 9(8). e106310. doi: 10.1371/journal.pone.0106310
Cyster J.G., Healy J.I., Kishihara K. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature. 1996. Vol. 381(6580). P. 325–328. doi: 10.1038/381325a0
Tarzi R.M., Liu J., Schneiter S. et al. CD14 expression is increased on monocytes in patients with anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis and correlates with the expression of ANCA autoantigens. Clin. Exp. Immunol. 2015. Vol. 181(1). P.65–75. doi: 10.1111/cei.12625