Розвиток біосенсорних технологій для визначення генетично модифікованих організмів
Анотація
Протягом майже трьох десятиліть після того, як генетично модифіковані організми (ГМО) були вперше комерціалізовані, генетично модифіковані (ГМ) культури здобули перевагу над своїми традиційними аналогами. Основними ознаками, привнесеними в комерціалізовані рослини, є стійкість до гербіцидів та шкідників. Впровадження ГМ культур в сільське господарство призвело до підвищення продуктивності сільськогосподарських культур. Незважаючи на їх швидке та широке впровадження МО викликали занепокоєння суспільства щодо їх впливу на здоров’я людини та довкілля, що обумовило стурбованість споживачів безпекою трансгенних харчових продуктів. Постановка питання про моніторинг та перевірку присутності ГМО в сільськогосподарських культурах та харчових продуктах викликала інтерес до розробки аналітичних методів для чутливого, точного, швидкого та дешевого детектування ГМО. ДНК біосенсори (геносенсори) були задумані як нова технологія виявлення ДНК, яка може замінити нинішні методи на основі ампліфікації, що потребують вартісного обладнання та висококваліфікованого персоналу. Цей огляд підсумовує розгляд ряду досліджень щодо застосування геносенсорних технологій для якісного та кількісного визначення трансгенних ознак.
Посилання
Bulletin of the Verkhovna Rada (VVR), 2023, No. 91, P. 354. [in Ukrainian].
Aghili Z., Nasirizadeh N., Divsalar A., Shoeibi S., Yaghmaei P. A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products. Biosens. Bioelectron. 2017. Vol. 95. P. 72–80. doi: 10.1016/j.bios.2017.02.054
Arugula M.A., Simonian A.L. Biosensors for detection of genetically modified organisms in food and feed. In: Genetically Modified Organisms in Food. Production, Safety, Regulation and Public Health; Ross Watson R., Preedy V. R. Elsevier. 2016. 517 p. doi: 10.1149/06636.0031ecst
Arugula M.A., Zhang Y., Simonian A.L. Biosensors as 21st century technology for detecting genetically modified organisms in food and feed. Anal. Chem. 2013. Vol. 86(1). P. 119–129. doi: 10.1021/ac402898j
Bai S., Zhang J., Li S., Chen H., Terzaghi W., Zhang X., Chi X., Tian J., Luo H., Huang W., Chen Y., Zhang Y. Detection of six genetically modified maize lines using optical thin-film biosensor chips. J. Agric. Food Chem. 2010. Vol. 58(15). P. 8490-8494. doi: 10.1021/jf100598k
Bak A., Emerson J.B. Cauliflower mosaic virus (CaMV) biology, management, and relevance to GM plant detection for sustainable organic agriculture. Front. Sustain. Food Syst. 2020. Vol. 4. P. 21. doi: 10.3389/fsufs.2020.00021
Berti F., Lozzi L., Palchetti I., Santucci S., Marrazza G. Aligned carbon nanotube thin films for DNA electrochemical sensing. Electrochim Acta. 2009. Vol. 54. P. 5035-5041. doi: 10.1016/j.electacta.2009.01.038
Broeders S., Fraiture M.-A., Vandermassen E., Delvoye M., Barbau-Piednoir E., Lievens A., Roosens N. New qualitative trait-specific SYBR®Green qPCR methods to expand the panel of GMO screening methods used in the CoSYPS. Eur. Food Res. Technol. 2015. Vol. 241(2). P. 275–287. doi: 10.1007/s00217-015-2454-6
Broeders S., Papazova N., Van den Bulcke M., Roosens N. Development of a molecular platform for GMO detection in food and feed on the basis of “Combinatory qPCR” technology. In: Polymerase Chain Reaction (Hernandez-Rodriguez P., Gome A.P.R., Eds.). InTech: Rijeka, Croatia, 2012. Vol. 1. P. 363–404. doi: 10.5772/37898
Cheng X., Li H., Tang Q., Zhang H., Liu T., Wang Y. Trends in the global commercialization of genetically modified crops in 2023. J. Integrative Agriculture. 2024. Vol. 23(12). P. 3943-3952. doi: 10.1016/j.jia.2024.09.012
Chou C.C., Lin Y.T., Kuznetsova I., Wang G.J. Genetically modified soybean detection using a biosensor electrode with a self-assembled monolayer of gold nanoparticles. Biosensors. 2022. Vol. 12.(4). P. 207. doi: 10.3390/bios12040207
Connolly A.R., Trau M. Isothermal detection of DNA by beacon-assisted detection amplification. Angew. Chem. Int. Ed. 2010. Vol. 49(15). P. 2720–2723. doi: 10.1002/anie.200906992.
Datukishvili N., Kutateladze T., Gabriadze I., Bitskinashvili K., Vishnepolsky B. New multiplex PCR methods for rapid screening of genetically modified organisms in foods. Front. Microbiol. 2016. Vol. 6: 757. doi: 10.3389/fmicb.2015.00757.
Dona A., Arvanitoyannis I.S. Health risks of genetically modified foods. Crit. Rev. Food Sci. Nutr. 2009. Vol. 49(2). 164–175. doi: 10.1080/10408390701855993.
Emslie K.R., Whaites L., Griffiths K.R., Murby E.J. Sampling plan and test protocol for the semiquantitative detection of genetically modified canola (Brassica napus) seed in bulk canola seed. J. Agric. Food Chem. 2007. Vol. 55(11). P. 4414–4421. doi: 10.1021/jf070267i
European Commission. Directive (EC) No 2001/18/EC on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC. Official Journal of the European Communities L 106/1:0001-0039.
European Commission. Regulation (EC) No 1830/2003 Concerning the Traceability and Labelling of Genetically Modified Organisms and the Traceability of Food and Feed Products Produced from Genetically Modified Organisms and Amending Directive 2001/18/EC.
Guven B., Hakk Boyac I., Tamer U., Calik P. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering. Analyst. 2012. Vol. 137(1). P. 202–208. doi: 10.1039/c1an15629b.
Fang H.M., Xie N.L., Ou M., Huang J., Li W.S., Wang Q., Liu J., Yang X., Wang K. Detection of nucleic acids in complex samples via magnetic microbead-assisted catalyzed hairpin assembly and "DD-A" FRET. Anal. Chem. 2018. Vol. 90(12). P. 7164–7170. doi: 10.1021/acs.analchem.8b01330.
ISAAA. 2019. Global Status of Commercialized Biotech/GM Crops in 2019: Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier. ISAAA Brief No. 55. ISAAA: Ithaca, NY. Available on: https://www.isaaa.org/resources/publications/pocketk/5/default.asp
James C. 20th Anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015 (ISAAA Brief No. 51). International Service for the Acquisition of Agri_biotech Applications: Ithaca, NY, USA, 2015. 286 p.
Jang H.-J., Cho I.-H., Kim H.-S., Jeon J.W., Hwang S.-Y., Paek S.-H. Development of a chemiluminometric immunosensor array for on-site monitoring of genetically modified organisms. Sens. Actuators B Chem. 2011. Vol. 155(1). P. 598–605. doi: 10.1016/j.snb.2011.01.016
Kalogianni D.P., Koraki T., Christopoulos T.K., Ioannou P.C. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Biosens. Bioelectron. 2006. Vol. 21(7). P. 1069–1076. doi: 10.1016/j.bios.2005.04.016.
Karamollaoglu I., Avni-Öktem H., Mutlu M. QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochem. Eng. J. 2009. Vol. 44. P. 142–150. doi: 10.1016/j.bej.2008.11.011.
Kasry A., Borri P., Davies P.R., Harwood A., Thomas N., Lofas S., Dale T. Comparison of methods for generating planar DNA-modified surfaces for hybridization studies. ACS Appl. Mater. Interfaces. 2009. Vol. 1(8). P. 1793–1798. doi: 10.1021/am9003073.
Komen J., Wafula D.K. Authorizing GM crop varieties: policy implications for seed systems in Sub-Saharan Africa. Agronomy. 2021. Vol. 11(9). P. 1855. doi: 10.3390/agronomy11091855
Labuda J., Brett A.M.O., Evtugyn G., Fojta M., Mascini M., Ozsoz M., Palchetti I., Paleček E., Wang J. Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report). Pure Appl. Chem. 2010. Vol. 82(5). P. 1161–1187. doi: 10.1351/PAC-REP-09-08-16.
Lien T.T.N., Lam T.D., An V.T.H., Hoang T.V., Quang D.T., Khieu D.Q., Tsukahara T., Lee Y.H., Kim J.S. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta. 2010. Vol. 80. P. 1164–1169. doi: 10.1016/j.talanta.2009.09.002.
Liu G., Su W., Xu Q., Long M., Zhou J., Song S. Liquid-phase hybridization based PCR-ELISA for detection of genetically modified organisms in food. Food Control. 2004. Vol. 1(4). P. 303-306. doi: 10.1016/S0956-7135(03)00081-1
Liu W., Meng L., Liu X., Liu C., Ji W. Establishment of an ELISA method for quantitative detection of PAT/pat in GM crops. Agriculture. 2022. Vol.12(9). 1400. doi: 10.3390/agriculture12091400.
Mahmoodi P., Fani M., Rezayi M., Avan A., Pasdar Z., Karimi E., Amiri I.S., Ghayour-Mobarhan M. Early detection of cervical cancer based on high-risk HPV DNA-based genosensors: A systematic review. Biofactors. 2019. Vol. 45(2). P. 101-117. doi: 10.1002/biof.1465.
Mannelli I., Minunni M., Tombelli S., Mascini M. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosens. Bioelectron. 2003. Vol. 18(2-3). P. 129–140. doi: 10.1016/S0956-5663(02)00166-5
Manzanares-Palenzuela C.L., de-los-Santos-Álvarez N., Lobo-Castañón M.J., López-Ruiz B. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean. Biosens. Bioelectron. 2015. Vol. 68. P. 259-265. doi: 10.1016/j.bios.2015.01.007
Manzanares-Palenzuela C.L., Mafra I., Costa J., Barroso M.F., de-los-Santos-Álvarez N., Delerue-Matos C., Oliveira M.B.P., Lobo-Castañón M.J., López-Ruiz B. Electrochemical magnetoassay coupled to PCR as a quantitative approach to detect the soybean transgenic event GTS40-3-2 in foods. Sens. Actuators B Chem. 2016. Vol. 222. P. 1050-1057. doi: 10.1016/j.snb.2015.09.013
Minunni M., Tombelli S., Fonti J., Spiriti M.M., Mascini M., Bogani P., Buiatti M. Detection of fragmented genomic DNAby PCR-free piezoelectric sensing using a denaturation approach. J. Am. Chem. Soc. 2005. Vol. 127(22). P. 7966–7967. doi: 10.1021/ja051345q.
Minunni M., Tombelli S., Pratesi S., Mascini M., Piati P., Bogani P., Buiatti M. A piezoelectric affinity biosensor for genetically modified organisms (GMOs) detection. Anal. Lett. 2001. Vol. 34(6). P. 825–840. doi: 10.1081/AL-100103595
Mousavian S.Z., Safarian M., Tavakoly Sany S.B., Pasdar Z., Rezayi M. Advancement in electrochemical DNA biosensors for GMO detection: Review Study. J Nutrition Fasting Health. 2018.Vol.6(4). P.168-173. doi: 10.22038/jnfh.2018.34319.1138
Noguchi A., Akiyama H., Nakamura K., Sakata K., Minegishi Y., Mano J., Takabatake R., Futo S., Kitta K., Teshima R., Kondo K., Nishimaki-Mogami T. A novel trait-specific real-time PCR method enables quantification of genetically modified (GM) maize content in ground grain samples containing stacked GM maize. Eur. Food Res. Technol. 2014. Vol. 240(2). P. 413-422. doi: 10.1007/s00217-014-2340-7
Passamano M., Pighini M. QCMDNA-sensor for GMOs detection. Sens. Actuator B: Chem. 2006. Vol. 118. No. 1-2. P. 177–181. doi: 10.1016/j.snb.2006.04.012.
Ponti L. Transgenic crops and sustainable agriculture in the European context. Bull. Sci. Technol. Soc. 2005. Vol. 25(4). P. 289-305. doi: 10.1177/0270467605277292.
Rezayi M., Ghayour-Mobarhan M., Tavakoly Sany S.B., Fani M., Avan A., Pasdar Z., Ferns G.A., Abouzari-Lotf E., Amiri I.S. A comparison of analytical methods for measuring concentrations of 25-hydroxy vitamin D in biological samples. Anal. Methods. 2018. Vol. 10(47). P.5599-5612. doi: 10.1039/C8AY02146E.
Rezayi M., Gholami M., Said NR, Alias Y. A novel polymeric membrane sensor for determining titanium (III) in real samples: Experimental, molecular and regression modeling. Sensors Actuators B: Chem. 2016. Vol. 224. P. 805-813. doi: 10.1016/j.snb.2015.10.089
Rezayi M., Karazhian R., Abdollahi Y., Narimani L., Tavakoly Sany S.B., Ahmadzadeh S., Alias Y. Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples. Sci. Rep. 2014. Vol. 4. P. 4664. doi: 10.1038/srep04664
Said N.R., Rezayi M., Narimani L., Al-Mohammed N., Manan N.S.A., Alias Y. A new N-heterocyclic carbene ionophore in plasticizer-free polypyrrole membrane for determining Ag+ in tap water. Electrochim. Acta. 2016. Vol. 197. P. 10-22. doi: 10.1016/j.electacta.2016.02.173
Sánchez-Paniagua López M., Manzanares-Palenzuela C.L., López-Ruiz B. Nearly 25 years of research. Critical Rev. Anal. Chem. 2018, Vol. 48(5). P.391-405. doi: 10.1080/10408347.2018.1442708
Stobiecka M., Cieśla J.M., Janowska B. Tudek B., Radecka H. Piezoelectric sensor for determination of genetically modified soybean Roundup Ready (R) in samples not amplified by PCR. Sensors. 2007. Vol. 7(8). P.1462–1479. DOI: 10.3390/s7081462.
Sun W., Zhang Y., Hu A., Lu Y., Shi F., Lei B., Sun Z. Electrochemical DNA biosensor based on partially reduced graphene oxide modified carbon ionic liquid electrode for the detection of transgenic soybean A2704-12 gene sequence. Electroanalysis. 2013. Vol. 25(6). P. 1417-1424. doi: 10.1002/elan.201300069
Sun W., Zhong J., Qin P., Jiao K. Electrochemical biosensor for the detection of cauliflower mosaic virus 35 S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Anal. Biochem. 2008. Vol. 377(2). P. 115-119. doi: 10.1016/j.ab.2008.03.027
Sun W., Zhong J., Zhang B., Jiao K. Application of cadmium sulfide nanoparticles as oligonucleotide labels for the electrochemical detection of NOS terminator gene sequences. Anal. Bioanal. Chem. 2007. Vol. 389(7-8). P. 2179-2184. doi: 10.1007/s00216-007-1661-9
Wang R., Minunni M., Tombelli S., Mascini M. A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor. Biosens. Bioelectron. 2004. Vol.20(3). P.598–605. doi: 10.1016/j.bios.2004.03.013.
Wang R., Tombelli S., Minunni M., Spiriti M.M., Mascini M. Immobilisation of DNA probes for the development of SPR-based sensing. Biosens. Bioelectron. 2004. Vol.20(5). P. 967–974. doi: 10.1016/j.bios.2004.06.013.
Xia Z., Zhang J., Pan R., Zhang K., Dai H. CRISPR/Cas12a-mediated entropy-driven electrochemical biosensor for detection of genetically modified maize Mon810. Analytica Chimica Acta 1296 (2024) 342290. doi: 10.1016/j.aca.2024.342290
Xu M., Wang R., Li Y. Electrochemical biosensors for rapid detection of Escherichia coli O157: H7. Talanta. 2017. No.162. P.511-522. doi: 10.1016/j.talanta.2016.10.050
Zhang Y., Wang W., Lin Z., Liu B., Zhou X. Dual-output toehold-mediated strand displacement amplification for sensitive homogeneous electrochemical detection of specie-specific DNA sequences for species identification. Biosens. Bioelectron. 2020. 161. doi: 10.1016/j.bios.2020.112256.
Zhao Z., Chen Y., Xu W., Ma M. Surface plasmon resonance detection of transgenic Cry1Ac cotton (Gossypium spp.). J. Agric. Food Chem. 2013. Vol.61(12). P. 2964–2969. doi: 10.1021/jf3050439.
Zhu D., Liu J., Tang Y., Xing D. A reusable DNA biosensor for the detection of genetically modified organism using magnetic bead-based electrochemiluminescence. Sens. Actuator B: Chem. 2010. Vol. 149(1). P. 221–225. doi: 10.1016/j.snb.2010.05.047.