Determination of the reference values of amino acids and acylcarnitines level in the newborn dry blood spots in Ukraine

  • O. I. Barvinska Laboratory of medical genetics NCSH «OHMATDYT» MOH Ukraine, Ukraine, 01135, V. Chornovola str. 28/1, Kyiv; Department of medical and laboratory genetics Shupyk NMAPE, Ukraine, 04112, Dorohozhytska Str. 9, Kyiv
  • N. V. Olkhovych Laboratory of medical genetics NCSH «OHMATDYT» MOH Ukraine, Ukraine, 01135, V. Chornovola str. 28/1, Kyiv
  • N. G. Gorovenko Department of medical and laboratory genetics of Shupyk NMAPE, Ukraine, 04112, Dorohozhytska Str. 9, Kyiv

Abstract

Aim. Implementation of neonatal screening of the group of severe inherited disorders of amino acids, fatty and organic acids metabolism in Ukraine involves determination of the biological variation of amino acids and acylcarnitines level in the blood that depends on the gender, geographical origin of the samples and the gestation term of newborn. Methods. The main method of rapid and reliable diagnosis of this group of inherited disorders is determination of amino acids and acylcarnitines level by liquid chromatography tandem mass spectrometry. Results. Reference intervals of amino acids and acylcarnitines concentration in dry blood samples of newborns from different regions of Ukraine haven’t differed. However, it was found necessity to use separate reference intervals of some amino acids and acylсarnitines (citrulline, arginine, methionine, leucine, tyrosine, alanine, histidine, C0, C3, C3DC, C4, C5, C6, C8, C8:1, C10:2, C12, C14:1, C16, C18OH, C18:1OH) for premature and full-term newborns. Also, it was revealed that for male and female newborns it is necessary to use different reference intervals of citrulline, leucine, C8:1, arginine, methionine, C5, C8. Conclusions. In this study it was found that variation of amino acids and acylcarnitines concentration in dry blood spots depends on the newborns gestation term and sex. We have proposed a two-stage procedure of biomarkers interpretation for which the values variation in different neonatal groups was detected.

Keywords: amino acids and acylcarnitines reference intervals, inherited disorders of amino acids, fatty and organic acids metabolism, newborn screening.

References

Zschocke J. SSIEM Classification of Inborn Errors of Metabolism. Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases / eds: Blau N., Duran M., Gibson K., Dionisi Vici C. Berlin, Heidelberg: Springer, 2014. P. 817–830.

Mak C. M., Lee H.-C. H., Chan A. Y.-W., Lam C.-W. Inborn errors of metabolism and expanded newborn screening: review and update Crit Rev. Clin Lab Sci. 2013. Vol.50(6). P. 142–162. doi: 10.3109/10408363.2013.847896

Levy P. A. Inborn Errors of Metabolism. Pediat. in Review. 2009. Vol. 30(4). P. 131–137. doi: 10.1542/pir.30-4-131

Therrell B. L., Padilla C. D., Loeber J. G., Kneisser I., Saadallah A., Borrajo G. J., Adams J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015. Vol. 39(3). P. 171–187. doi: 10.1053/j.semperi.2015.03.002

Jung B., Khosrow A. Clinical Laboratory Reference Intervals in Pediatrics: The CALIPER Initiative. Clinic Biochemistry. 2009. Vol. 42(16–17). P. 1589–1595. doi: 10.1016/j.clinbiochem.2009.06.025

Teodoro-Morrison T., Kyrikopoulou, Yunqi K. C., Joshua E. Raizman, Bevilacqua V., Man Khun Chan, Wan B., Yazdanpanah M., Shulze A., Adeli K. Dynamic biological changes in metabolic disease biomarkers in childhood and adolescence: A CALIPER study of healthy community children. Clin. Biochem. 2015. Vol. 48. P. 828–836. doi: 10.1016/ j.clinbiochem.2015.05.005

Huang X., Yang L., Tong F., Yang R., Zhao Z. Screening for inborn errors of metabolism in highrisk children: a 3-year pilot study in Zhejiang Province, China. BMC Pediatrics. 2012. Vol. 12(18). P. 1–7. doi: 10.1186/1471-2431-12-18

Meyburg J., Schulze A., Kohlmueller D., Linderkamp O. and Mayatepek E. Postnatal Changes in Neonatal Acylcarnitine Profile. Pediat. Res. 2001. Vol. 49(1). P. 125–129. doi: 10.1203/00006450-200101000-00024

Olajumoke O. Oladipo, Annette L. Weindel, Al N. Saunders, Dennis J. Dietzen. Impact of premature birth and critical illness on neonatal range of plasma amino acid concentrations determined by LC-MS/MS. Molecular Genetics and Metabolism. 2011. Vol. 104. P. 476–479. doi: 10.1016/j.ymgme.2011.08.020

Dietzen D. J., Bennett Michael J., Lo Stanley F., Grey Vijay L. and Jones Patti M. Dried blood spot reference intervals for steroids and amino acids in a neonatal cohort of the national children’s study. Clinical Chemistry. 2016. Vol. 62(12). P. 1–10. doi: 10.1373/clinchem.2016.263434

Ruoppolo M., Scolamiero E., Caterino M., Mirisola V., Franconid F., Campesi I. Female and male human babies have distinct blood metabolomic patterns. Mol Biosyst. 2015. Vol. 11(9). P. 2483–2492. doi: 10.1039/c5mb00297d

Lahti A., Hyltoft Petersen P., Boyd J. C., Fraser C. G., Jorgensen N. Objective criteria for partitioning Gaussian-distributed reference values into subgroups. Clin Chem. 2002. Vol.48(2). P.338-352.

Mandour I., El Gayar D., Amin M., Farid T. M., Ali A. A. Amino acid and acylcarnitine profiles in premature neonates: a pilot study. Indian J Pediatr. 2013. Vol. 80(9). P. 736–744. doi: 10.1007/s12098-013-0980-4

Rosenthal M. D., Glew R. H. Medical biochemistry: Human metabolism in health and disease, Danvers: Wiley, 2009. P. 141–162.

Andermann A., Blancquaert I., Beauchamp S., Déry V. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bulletin of the World Health Organization. 2008. Vol. 86(4). P. 317–319. doi: 10.2471/BLT.07. 050112