Genetic transformation of Nicotiana tabacum with the yeast TPS1 and TPS2 genes involved in trehalose synthesis
Abstract
Aim. The aim of the study was the creation of vector constructions with yeast genes of trehalose synthesis TPS1 and TPS2 and their using for Agrobacterium-mediated transformation of N. tabacum. Methods. Strain of Agrobacterium tumefaciens GV3101 carrying vector constructions — pGWB2-TPS1 and pGWB2-TPS2 with TPS1 and TPS2 target genes respectively under 35S promoter of cauliflower mosaic virus and selectable hpt gene of hygromycin phosphotransferase has been used for plants transformation. N. tabacum leaf explants were used for Agrobacterium-mediated transformation. The medium with the addition of hygromycin was applied to transgenic lines selection. Results. The created vector constructions pGWB2-TPS1 and pGWB2-TPS2 has been used in genetic N. tabacum transformation. Target genes TPS1 and TPS2 were integrated applied of Agrobacterium-mediated transformation and transgenic lines of N. tabacum were selected with addition at 25 mg/L hygromycin into the medium. Molecular analysis confirmed the transgenic nature of selected lines. Conclusions. Sensitivity of selected lines for sugars content into the medium was established for shoots and roots formation of tobacco plants. Conditions for increase of transformation frequency and rooting of transgenic lines of plant after integrated of target TPS1 and TPS2 genes were investigated.
Keywords: trehalose, yeast genes TPS1, TPS2, genetic transformation, Nicotiana tabacum.
References
Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Current Protocol in Molecular Biology. New York: John Wiley, 1987. P. 431–433.
Curtis I. S., Davey M. R., Power J. B. Leaf Disk Transformation. Agrobacterium Protocols. 1995. Vol. 5. P. 59–70. doi: 10.1385/0-89603-302-3:59.
Divate N. R., Chen G.-H., Divate R. D., Ou B. R., Chung Y. C. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance. Bioengin. 2017. Vol. 5. P. 524–535. doi: 10.1080/21655979.2016.1257449.
Fingueroa C. M., Feil R., Ishihara H., Watanabe M., Kolling K., Krause U., Hohne M., Encke B., Plaxton W. C., Zeeman S. C., Li Z., Schulze W. X., Hoefgen R., Stitt M., Lunn J. E. Trehalose-6- phosphate coordinates organic and amino-acid metabolism with carbon availability. Plant J. 2016. Vol. 85. P. 410–423. doi: 10.1104/pp.16.00417.
Fleuler F., Stettler T., Meyerhofer M., Leder L., Mayr I. M. Development of a novel Gateway-based vector system for efficient, multiparallel protein expression in Escherichia coli. Protein Expr.Purif. 2008. Vol. 59. P. 232–241. doi: 10.1016/j.pep.2008. 02.003.
Goddijn J. M., Verwoerd Th. C., Voogd E., Krutwagen R. W. H. H., de Graaf P. T. H., Poeis J., van Dun K., Ponstein A. S., Damm B., Pen J. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol. 1997. Vol. 113. P. 181-190. doi: 10.1104/pp.113.1.181.
Gomes D. L., Baud S.,Gilday A., Li Y., Graham A. Delayed embryo development in the Arabidopsis trehalose-6-phoshate synthase 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J. 2006. Vol. 46. P. 69–84. doi:10.1111/j.1365-313X.2006.02 662.x.
Iordachescu M., Imai R. Trehalose biosynthesis in response to abiotic stresses. J. Integr. Plant Biol. 2008. Vol. 50. P. 1223–1229. doi: 10.1111/j.1744- 7909.2008.00736.x.
Jung I.-C., Oh S.-J., Seo J.-S., Choi W.-B., Song S. J., Kim Ch. H., Kim Y. Sh., Seo H.-S., Choi Y. D., Nahm B. H., Kim J.-K. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6- phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 2003. Vol. 131. P. 516–524. doi:10.1073/pnas.1322 135111.
Karim S., Aronsson H., Ericson H., Pirhonen M., Leyman B., Welin B., Mantyla E., Palva E. T., Dijck P. V., Holmstrom K. O. Improved drought tolerance without undesired side effect in transgenic plants producing trehalose. Plant Mol. Biol. 2007. Vol. 64. P. 371–386. doi:10.1007/s11103-007-9159-6.
Karimi M., Inze D., Depicker A. GATEАWAY vectors for Agrobacterium-mediated plant transformation. Trends. Plant Sci. 2002. Vol. 7. P. 193–195. doi: 10.1038/nature05286.
Kwon H. B., Yeo E. T., Hahn S. E., Bae S. C., Kim D. Y., Byun M. O. Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2) from Zygosaccharomyces rouxii. Yeast Research. 2003. Vol. 3. P. 433–440. doi: 10.1016/ S1567-1356(03)00035-7.
Lunn J. E., Delorge I., Figueroa C. M., Dijck P. V., Stitt M. Trehalose metabolism in plants. Plant J. 2014. P. 544–567. doi: 10.1111/tpj.12509.
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962. Vol. 15. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.
O’Hara L. E., Paul M. J., Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol. r Plant. 2013. Vol. 8. P. 261–274. doi: 10.1093/mp/sss120.
Paul M. J., Primavesi L. F., Jhurreea D., Zhang Y. Trehalose metabolism and signaling Annual Rev. Plant Biol. 2008. Vol. 59. P. 417–441. doi: 10.1146/annurev.arplant.59.032607.092945.
Petitijean M., Teste M. A., Leger-Silvestre I., Francois J. M., Parrou J.-L. A new function for the yeast Trehalose-6P Synthase (Tps1) protein, as key pro-survival factor during growth, chronological ageing and apoptotic stress. Mechanisms Ageing Dev. 2016. doi: 10.1016/j.mad.2016.07.011.
Pilon-Smits E. A., Terry N., Sears T. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. Plant Physiol.1998. Vol. 152. No. 4/5. P. 525–532.
Romero C., Belles J. B., Vaya J. L., Serrano R., Culianez-Macia A. Expression of the yeast trehalose- 6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta. 1997. Vol. 201. P. 293–297.
Rosales-Campos A. L., Gutierrez-Ortega A. Agrobacterium-mediated transformation of Nicotiana tabacum cv. Xanthi leaf explants. Bio-101. 2019. E3150. doi: 10.21769/BioProtoc.3150.
Schluepmann H., Pellne T., van Dijken A., Smeekers S., Paul M. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc. Nat. Acad. Sci (USA). 2003. Vol. 100. P. 6849–6854. doi: 10.1073/pnas.1132018100.
Seo H. S., Koo Y. J., Lim J. Y., Song J. T., Kim C. H., Kim J.-K., Lee J. S., Choi Y. D. Characterization of a bifunctional fusion enzyme between trehalose-6-phosphate synthase and trehalose-6-phosphatase of Escherichia coli. Appl. Environ Microbiol. 2000. Vol. 66. P. 2484–2490. doi: 10.1128/aem.66.6.2484-2490.2000.
Tuncer T. Transformation of tobacco (Nicotiana tabacum) with antimicrobial pflp gene and analysis of transgenic plants. In: Partial Fulfillment of the Requirements the Degree of Masters of Science in Biotechnology. 2006. P. 110.
Wang Y. J., Hao Y. J., Zhang Z. G., Chen T., Zhang J. S., Chen S. Y. Isolation of trehalose-6- phosphate phosphatase gene from tobacco and its functional analysis in yeast cells. J. Plant Physiol. 2004. Vol. 162. P. 215–223. doi: 10.1016/j.jplph. 2004.06.014.
Yatsyshyn V. Yu., Kvasko A. Yu., Yemets A. I. Genetic approaches in research on the role of trehalose in plants. Cytol Genet. 2017. Vol. 51, № 5. P. 62–78. doi: 10.3103/S0095452717050127.