Expression analisis of the ITSN2 and TKS5 mRNA isoforms in human malignant breast tumors

  • S. V. Kropyvko Institute of Molecular Biology and Genetics NAS of Ukraine 150, Zabolotnogo str., 03143, Kyiv, Ukraine
  • L. O. Tsyba Institute of Molecular Biology and Genetics NAS of Ukraine 150, Zabolotnogo str., 03143, Kyiv, Ukraine
  • O. V. Novokhatska Institute of Molecular Biology and Genetics NAS of Ukraine 150, Zabolotnogo str., 03143, Kyiv, Ukraine
  • L. A. Syvak The National Cancer Institute, 33/43, Lomonosova str., 03022, Kiev, Ukraine
  • T. Ye. Tarasenko The National Cancer Institute, 33/43, Lomonosova str., 03022, Kiev, Ukraine
  • A. N. Grabovoy The National Cancer Institute, 33/43, Lomonosova str., 03022, Kiev, Ukraine
  • A. V. Rynditch Institute of Molecular Biology and Genetics NAS of Ukraine 150, Zabolotnogo str., 03143, Kyiv, Ukraine

Abstract

Aim. Despite the great progress in cancer treating, the breast cancer remains lethal in 15 % cases. Regardless of the many years of research and extensive experience in the treatment of this type of cancer, one of the main problems in diagnosis and therapy is its high clinical and genetic heterogeneity. Thereby the identification of markers for personalized treatment of patients is still an actual issue. Methods. Collection of clinical material, RNA isolation, and expression analysis of ITSN2 and TKS5 isoforms using quantitative real time PCR with fluorescence-labeled probes. Results. We have found that ITSN2-S expression is reliably reduced in HER2/neu-positive tumors with poor prognosis. There were no significant differences in the expression of ITSN2-L and TKS5-L in the analyzed samples. Conclusions. These studies have demonstrated the possible use of ITSN2 short isoform (ITSN2-S) as a prognostic marker for breast cancer.
Keywords: breast cancer, ITSN2, TKS5, expression analysis.

References

Dai X., Li Y., Bai Z., Tang X. Q. Molecular portraits revealing the heterogeneity of breast tumor subtypes defined using immunohistochemistry markers. Sci Rep. 2015. Vol. 5. P. 14499, doi: 10.1038/srep14499

Tang Y., Wang Y., Kiani M. F., Wang B. Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer. Clin Breast Cancer. 2016. Vol. 16(5). P. 335–343. doi: 10.1016/j.clbc.2016.05.012

Pourteimoor V., Mohammadi-Yeganeh S., Paryan M. Breast cancer classification and prognostication through diverse systems along with recent emerging findings in this respect; the dawn of new perspectives in the clinical applications. Tumour Biol. 2016. Vol. 37(11). P. 14479–14499.

Leidy J., Khan A., Kandil D. Basal-like breast cancer: update on clinicopathologic, immunohistochemical, and molecular features. Arch Pathol Lab Med. 2014. Vol. 138(1). P. 37–43. doi: 10.5858/arpa.2012-0439RA

Lam S. W., Jimenez C. R., Boven E. Breast cancer classification by proteomic technologies: Current state of knowledge. Cancer Treat Rev. 2014. Vol. 40(1). P. 129–138.

Eroles P., Bosch A., Pérez-Fidalgo J. A., Lluch A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012. Vol. 38(6). P. 698–707. doi: 10.1016/j.ctrv.2011.11.005

Dai X., Xiang L., Li T., Bai Z. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J Cancer. 2016. Vol. 7(10). P. 1281 –1294. doi: 10.7150/jca.13141

Fusco N., Geyer F. C., De Filippo M. R. Martelotto L. G., Ng C. K., Piscuoglio S., Guerini-Rocco E., Schultheis A. M., Fuhrmann L., Wang L., Jungbluth A. A., Burke K. A., Lim R. S., Vincent-Salomon A., Bamba M., Moritani S., Badve S. S., Ichihara S., Ellis I. O., Reis-Filho J. S., Weigelt B. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer. Mod Pathol. 2016. Vol. 29(11). P. 1292– 1305. doi: 10.1038/modpathol.2016.134

Schmidt M., Thomssen C., Untch M. Intrinsic Subtypes of Primary Breast Cancer — Gene Expression Analysis. Oncol Res Treat. 2016. Vol. 39(3). P. 102–110. doi: 10.1159/000444409

Specht K., Harbeck N., Smida J., Annecke K., Reich U., Naehrig J., Langer R., Mages J., Busch R., Kruse E., Klein-Hitpass L., Schmitt M., Kiechle M. Expression profiling identifies genes that predict recurrence of breast cancer after adjuvant CMF-based chemotherapy. Breast Cancer Res Treat. 2008. Vol. 118. P. 45–56. doi: 10.1007/s10549-008-0207-y

Pucharcos C., Casas C., Nadal M., Estivill X., de la Luna S. The human intersectin genes and their spliced variants are differentially expressed. Biochim. Biophys. Acta. 2001. Vol. 1521(1-3). P. 1–11. doi: 10.1016/S0167-4781(01)00276-7

Adams A., Thorn J. M., Yamabhai M., Kay B. K., O'Bryan J. P. Intersectin, an Adaptor Protein Involved in Clathrin-mediated Endocytosis, Activates Mitogenic Signaling Pathways. J. Biol. Chem. 2000. Vol. 275(35). P. 27414–27420.

McGavin M. K., Badour K., Hardy L. A., Kubiseski T. J., Zhang J., Siminovitch K. A. The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)-mediated actin polymerization to T cell antigen receptor endocytosis. J Exp Med. 2001. Vol. 194. P. 1777–1787.

Tsyba L., Nikolaienko O., Dergai O., Dergai M., Novokhatska O., Skrypkina I., Rynditch A. Intersectin multidomain adaptor proteins: Regulation of functional diversity. Gene. 2011. Vol. 473. P. 67–75. doi: 10.1016/j.gene.2010.11.016

Gryaznova T., Kropyvko S., Burdyniuk M., Gubar O., Kryklyva V., Tsyba L., Rynditch A. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia. Cell. Signal. 2015. Vol. 27(7). P. 1499–1508. doi: 10.1016/j.cellsig.2015.03.006

Staub E., Groene J., Heinze M., Mennerich D., Roepcke S. , Klaman I., Hinzmann B., CastanosVelez E., Pilarsky C., Mann B., Brümmendorf T., Weber B., Buhr H.-J., Rosenthal A. An expression module of WIPF1 -coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med. 2009. Vol. 87. P. 633–644. doi: 10.1007/s00109-009-0467-y

Murphy D. A., Courtneidge S. A. The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell. Biol. 2011. Vol. 12(7). P. 413–426.

Courtneidge S. A. Cell migration and invasion in human disease: the Tks adaptor proteins. Biochem. Soc. Trans. 2012. Vol. 40(1). P. 129–132. doi: 10.1042/BST20110685

Blouwa B., Sealsb D. F., Passa I. et al. A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. European Journal of Cell Biology. 2008. Vol. 87(8–9). P. 555–567. doi: 10.1016/j.ejcb.2008.02.008

C. M. Li, Guoan Chen, T. L. Dayton, C. Kim-Kiselak, S. Hoersch, C. A. Whittaker, R. T. Bronson, D. G. Beer, M. M. Winslow, T. Jacks. Differential Tks5 isoform expression contributes to metastatic invasion of lung adenocarcinoma. Genes and Development. 2013. Vol. 27. P.1557–1567. doi: 10.1101/gad.222745.113

Drury S., Anderson H., Dowsett M. Selection of REFERENCE genes for normalization of qRT-PCR data derived from FFPE breast tumors. Diagn. Mol. Pathol. 2009. Vol. 18(2). P. 103–107. doi: 10.1097/PDM.0b013e31817c1ae2

Lyng M. B., Laenkholm A. V., Pallisgaard N., Ditzel H. J. Identification of genes for normalization of real-time RT-PCR data in breast carcinomas. BMC Cancer. 2008. Vol. 22. P. 20. doi: 10.1186/1471 -2407-8-20

Radonic A., Thulke S., Mackay I. M., Landt O., Siegert W., Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004. Vol. 313. P. 856–862. doi: 10.1016/j.bbrc.2003.11.177