Antiproliferative potential of mouse embryonic fibroblasts secreting IFN-β or IL-21, upon cocultivating with Lewis lung adenocarcinoma cells

  • I. N. Vagyna Institute of Molecular Biology and GeneticsNAS of Ukraine, Ukraine, 03143, Kyiv, Akademika Zabolotnogo str., 150
  • O. A. Zaharuk Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03143, Kyiv, Akademika Zabolotnogo Str., 150
  • L. I. Strokovska Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03143, Kyiv, Akademika Zabolotnogo Str., 150
  • Yu. V. Vagyn Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03143, Kyiv, Akademika Zabolotnogo Str., 150
  • V. I. Kashuba Institute of Molecular Biology and Genetics NAS of Ukraine, Ukraine, 03143, Kyiv, Akademika Zabolotnogo Str., 150

Abstract

Aim. Investigation of the effect of mouse embryonic fibroblasts (C57Fb), transduced with baculovirus vectors (BVs), producing IFN-β and IL-21 cytokines on survival and proliferation of Lewis lung adenocarcinoma cells (LL). Methods. Construction of BVs, transduction of cells, fluorescence microscopy, flow cytometry. Results. It was shown that adenocarcinoma cells were more sensitive to the antiproliferative effect of IFN-β and IL-21. The efficacy of inhibiting the proliferation of tumor cells LL was higher when co-cultured heterologous cells C57Fb/IFNβ: LL. Cocultivation of C57Fb cells loaded with the BV-IL21 vector and cells LL caused a slight inhibition of adenocarcinoma cell proliferation. The mouse embryonic fibroblasts suppressed proliferation of cells LL upon co-cultivating. Conclusions. Interferon β synthesized by mouse embryonic fibroblasts or tumor cells LL, that were transduced with BVs carrying mouse Ifn-β gene, inhibited proliferation of adenocarcinoma malignant cells in vitro. Interleukin-21, produced by transduced tumor cells LL, effectively inhibited the proliferation of these cells.

Keywords: interferon-β (IFN-β), interleukin-21 (IL-21), mouse embryonic fibroblasts (C57Fb), lung adenocarcinoma cell line (LL), baculovirus vector (BV).

References

Cihova M., Altanerova V., Altaner C. Stem cell based cancer gene therapy. Mol. Pharm. 2011. Vol. 8(5). P. 1480–1487. doi: 10.1021/mp200151a

Khan M.M. Role of cytokines. Immunopharmacology. Springer, 2008. P. 33–59. doi: 10.1007/978-0-387-77976-8_2

Qian C., Liu X.Y., Prieto J. Therapy of cancer by cytokines mediated by gene therapy approach. Cell Res. 2006. Vol. 16(2). P. 182–188. doi: 10.1038/sj.cr.7310025

Goodbourn S., Didcock L., Randall R.E. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol. 2000. Vol. 81. P. 2341–2364. doi: 10.1099/0022-1317-81-10-2341

Kaynor C., Xin M., Wakefield J., Barsoum J., Qin X.Q. Direct evidence that IFN-beta functions as a tumor-suppressor protein. J Interferon Cytokine Res. 2002. Vol. 22(11). P. 1089–1098. doi: 10.1089/10799900260442511

Studeny M., Marini F.C., Dembinski J.L., Zompetta C., Hansen M.C., Bekele B.N., Champlin R.E., Andreeff M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004. Vol. 96(21). P. 1593–1603. doi: 10.1093/jnci/djh299

Skak K., Kragh M., Hausman D., Smyth M.J., Sivakumar P.V. Interleukin 21: combination strategies for cancer therapy. Nature Rev. Drug Discov. 2008. Vol. 7(3). P. 231–240. doi: 10.1038/nrd2482

Spolski R., Leonard W.J. Interleukin 21: a double-edged sword with therapeutic potential. Nature Rev. 2014. Vol. 13(5). P. 379–395. doi: 10.1038/nrd4296

Amara I., Touati W., Beaune P., Waziers I. Mesenchymal stem cells as cellular vehicles for prodrug gene therapy against tumors. Biochimie. 2014. Vol. 105. P. 4–11. doi: 10.1016/j.biochi.2014.06.016

Serakinci N., Fahrioglu U., Christensen R. Mesenchymal stem cells, cancer challenges and new directions. Eur J Cancer. 2014. Vol. 50. P. 1522–1530. doi: 10.1016/j.ejca.2014.02.011

Mavroudi M., Zarogoulidis P. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy. J Cancer Res Ther (Manch). 2014. Vol. 2(1). P. 22–33. doi: 10.14312/2052-4994.2014-4

Yusuf B., Gopurappilly R., Dadheech N., Gupta S., Bhonde R., Pal R. Embryonic fibroblasts represent a connecting link between mesenchymal and embryonic stem cells. Develop Growth Differ. 2013. Vol. 55(3). P. 330–340. doi: 10.1111/dgd.12043

Haniffa M.A., Collin M.P., Buckley C.D., Dazzi F. Mesenchymal stem cells: the fibroblasts’ new clothes. Haematologica. 2009. Vol. 94(2). P. 258–263. doi: 10.3324/haematol.13699

Sun H., Gulbagci N.T., Taneja R. Analysis of growth properties and cell cycle regulation using mouse embryonic fibroblast cells. Methods Mol Biol. 2007. Vol. 383. P. 311–319. doi: 10.1007/978-1-59745-335-6_20

Saeed H., Taipaleenmaki H., Aldahmash A.M., Abdallah B.M., Kassem M. Mouse embryonic fibroblasts (MEF) exhibit a similar but not identical phenotype to bone marrow stromal stem cells (BMSC). Stem Cell Rev. 2012. Vol. 8. P. 318–328. doi: 10.1007/s12015-011-9315-x

Airenne K.J., Hu Y.C., Kost T.A., Smith R.H., Kotin R.M., Ono C., Matsuura Y., Wang S., Herttuala S.Y. Baculovirus: an Insect-derived vector for diverse gene transfer applications. Mol Ther. 2013. Vol. 21(4). P. 739–749. doi: 10.1038/mt.2012.286

Chen C.Y., Lin C.Y., Chen G.Y., Hu Y.C. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv. 2011. Vol. 29. P. 618–631. doi: 10.1016/j.biotechadv.2011.04.004

Anopriyenko O.V., Vagyna I.N., Zakharuk O.A., Strokovska L.I., Solomko O.P. Baculovirus vectors Ac-CMV-GFP, Ac-M-GFP and Ac-IFN-GFP for eficient gene transfer to the mammalian cells. Visn. Ukr. Tov. Genet. Selekc. 2010. Vol. 8(1). P. 3–9.

King L.A., Possee R.D. The baculovirus expression system. A laboratory guide. London: Chapmann and Hall, 1992. 220 p.

Vagyna I. N., Anopriyenko O. V., Zaharuk O. A., Gorchev V. F., Strokovska L. I., Solomko A. P. Efficient gene delivery into mammalian cells by baculovirus vector in vitro. Biopolymers and cell. 2008. Vol. 24(6). P. 508–512. doi: 10.7124/bc.0007C4

Hogan B., Beddington R., Costantini F., Lacy E. Manipulating the Mouse Embryo: a Laboratory Manual. Woodbury, USA: Cold Spring Harbor Press. 1994. 332 p.

Vagyna I.N., Zaharuk O.A, Strokovska L.I., Vagyn Y.V, Kashuba V.I. Mouse embryonic fibroblasts expressing IFNβ or IL-21 inhibit proliferation of melanoma cells in vitro. Biopolym. Cell. 2016. Vol. 32(6). P. 433–441. doi: 10.7124/bc.00093A

Chen G.Y., Shiah H.C., Su H.J., Chen C.Y., Chuang Y.J., Lo W.H., Huang J.L., Chuang C.K., Hwang S.M., Hu Y.C. Baculovirus transduction of mesenchymal stem cells triggers the toll-like receptor 3 pathway. J Virol. 2009. Vol. 83(20). P. 10548–10556. doi: 10.1128/JVI.01250-09

Cmirnikhina S.A. Ekspressiia genov transfitsirovannykh v mezenkhimal'nye stvolovye kletki cheloveka. Kletochnaia transplant. i tkanevaia inzh. 2010. Vol. 5(4). P. 16–23.

Flaberg E., Guven H., Savchenko A., Pavlova T., Kashuba V., Szekely L., Klein G. The architecture of fibroblast monolayers of different origin differentially influences tumor cell growth. Int J Cancer. 2012. Vol. 131(10). P. 2274–2283. doi: 10.1002/ijc.27521

Alkasalias T., Flaberg E., Kashuba V., Alexeyenko A., Pavlova T., Savchenko A., Szekely L., Klein G., Guven H. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent. PNAS. 2014. Vol. 111(48). 17188–17193. doi: 10.1073/pnas.1419554111

Parker B.S., Rautela J., Hertzog P.J. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016. Vol. 16(3). P. 131–144. doi: 10.1038/nrc.2016.14