Life extension in Drosophila melanogasteras a result of development in conditions of high larval density

  • A. S. Karaman Kyiv National Taras Shevchenko University, Educational and Scientific Center «Institute of Biology and Medicine», Ukraine, 03127, Kyiv, Volodymyrska str., 64
  • A. M. Vaiserman State Institution «D. F. Chebotarev Institute of Gerontology NAMS Ukraine», Ukraine, 04114, Kyiv, Vyshgorodska street, 67
  • A. K. Koliada State Institution «D. F. Chebotarev Institute of Gerontology NAMS Ukraine», Ukraine, 04114, Kyiv, Vyshgorodska street, 67
  • O. G. Zabuga State Institution «D. F. Chebotarev Institute of Gerontology NAMS Ukraine», Ukraine, 04114, Kyiv, Vyshgorodska street, 67
  • A. V. Pisaruk State Institution «D. F. Chebotarev Institute of Gerontology NAMS Ukraine», Ukraine, 04114, Kyiv, Vyshgorodska street, 67
  • N. M. Koshel State Institution «D. F. Chebotarev Institute of Gerontology NAMS Ukraine», Ukraine, 04114, Kyiv, Vyshgorodska street, 67
  • L. V. Mekhova State Institution «D. F. Chebotarev Institute of Gerontology NAMS Ukraine», Ukraine, 04114, Kyiv, Vyshgorodska street, 67
  • I. A. Kozeretska Kyiv National Taras Shevchenko University, Educational and Scientific Center «Institute of Biology and Medicine», Ukraine, 03127, Kyiv, Volodymyrska str., 64

Abstract

Aim. To investigate the life expectancy and reproductive activity of Drosophila melanogaster that developed in conditions of increased larval density. Methods. Mean and maximum life span were determined in males and females in the different experimental groups. The reproductive activity was evaluated by counting the total number of eggs laid by one female per day. Results. A significant increase of the mean life span compared to control was observed in adults that hatched from pupae during the first and second days after the beginning of the emergence: males — 24 % and 23.5 %, females — 23.8 % and 29.3 % respectively. The level of reproductive activity (fecundity) is statistically lower in two groups which hatched last. Conclusions. Based on the results obtained, we suggest that development in conditions of increased larval density can lead to increase in the life span of D. melanogaster.

Keywords: life span, Drosophila melanogaster, reproductive activity, development.

References

De Magalhaes J. P. Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J. 2012. Vol. 26(12). P. 4821–4826. doi: 10.1096/fj.12-210872

Walker R. F. Developmental theory of aging revisited: focus on causal and mechanistic links between development and senescence. Rejuv. Res. 2011. Vol. 14. P. 429–436. doi: 10.1089/rej.2011.1162

Lints F. A. Genetics and ageing. Interdisciplinary topics in gerontology. Basel ; New York: Karger. 1978. 124 p.

Vaiserman A. M. Early-life nutritional programming of longevity J. Dev. Orig. Health Dis. 2014. Vol. 5(5). P. 325–338. doi: 10.1017/S2040174414000294

Vaiserman A. M. Epigenetic programming by early-life stress: Evidence from human populations. Dev. Dyn. 2015. Vol. 244(3). P. 254–265. doi: 10.1002/dvdy.24211

Vaiserman A. M. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? Clin. Epigenetics. 2015. Vol. 7:96. doi: 10.1186/s13148-015-0130-0

Vaiserman A. M., Koljada A. K., Zabuga O. G. Effect of Dietary Restriction during Development on the Level of Expression of Longevity-Associated Genes in Drosophila melanogaster. Advances in Gerontology. 2014. Vol.4(3). P. 193–196.

Vaiserman A. M., Voitenko V. P. Early programming of adult longevity: demographic and experimental studies. J. Anti Aging Med. 2003. Vol. 6(1). P. 11–20.

Lints F. A., Lints C. V. Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybirds. I. Preimaginal population density. Exp. Gerontol. 1969. Vol. 4(4). P. 231–244.

Lints F. A., Lints C. V. Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybrids. 3. Developmental speed and life-span. Exp. Gerontol. 1971. Vol. 6(6). P. 427–445.

Economos A. C., Lints F. A. Growth rate and life span in Drosophila. II. A biphasic relationship between growth rate and life span. Mech. Ageing Dev. 1984. Vol. 27(2). P. 143–151.

Shenoi V. N., Syed Z. A., Prasad N. G. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding. J. Evol. Biol. 2016. Vol. 29(2). P. 407–417. doi: 10.1111/jeb.12795

Zwaan B. J., Bijlsma R., Hoekstra R. F. On the developmental theory of ageing. I. Starvation resistance and longevity in Drosophila melanogaster in relation to pre-adult breeding conditions. Heredity (Edinb). 1991. Vol. 66(1). P. 29–39.

Martin G. M., Austad S. N., Johnson T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nature Genetics. 1996. Vol. 13. P. 25–34. doi: 10.1038/ng0596-25

Buck S., Nicholson M., Dudas S. et al. Larval regulation of adult longevity in a genetically-selected long-lived strain of Drosophila. Heredity. 1993. Vol. 71. P. 23–32.

Sorensen J. G., Loeschcke V. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect. Physiol. 2001. Vol. 47(11). P. 1301–1307.

Economos A. C., Lints F. A. Growth rate and life span in Drosophila. IV. Role of cell size and cell number in the biphasic relationship between life span and growth rate. Mech. Ageing Dev. 1985. Vol. 32(2-3). P. 193–204.

Moghadam N. N., Holmstrup M., Manenti T., Loeschcke V. Phospholipid fatty acid composition linking larval-density to lifespan of adult Drosophila melanogaster. Exp. Gerontol. 2015. Vol. 72. 177–183. doi: 10.1016/j.exger.2015.10.007

Langley-Evans S. C. Nutrition in early life and the programming of adult disease: a review. J. Hum. Nutr. Diet. 2015. Vol. 28. Suppl 1. P. 1–14. doi: 10.1111/jhn.12212

Tarry-Adkins J. L., Ozanne S. E. The impact of early nutrition on the ageing trajectory. Proc. Nutr. Soc. 2014. Vol. 73(2). P. 289–301. doi: 10.1017/S002966511300387X

Miller R. S., Thomas J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology. 1958. Vol. 39(1). P. 118–125

Economos A. C., Lints F. A. Growth rate and life span in Drosophila. I. Methods and mechanisms of variation of growth rate. Mech. Ageing Dev. 1984. Vol. 27(1). P. 1–13.

Economos A. C., Lints F. A. Growth rate and life span in Drosophila. III. Effect of body size and developmental temperature on the biphasic relationship between growth rate and life span. Mech. Ageing Dev. 1984. Vol. 27(2). P. 153–160.

Economos A. C., Lints F. A. Developmental temperature and life span in Drosophila melanogaster. II. Constant developmental temperature: evidence for physiological adaptation in a wide temperature range. Gerontology. 1986. Vol. 32(1). P. 18–27.

Joshi A., Shiotsugu J., Mueller L. D. Phenotypic enhancement of longevity by environmental urea in Drosophila melanogaster. Experimental Gerontology. 1996. Vol. 31. P. 533–544.

Scheiring J. F., Davis D. G., Ranasinghe A., Teare C. A. Effects of larval crowding on life history parameters in Drosophila melanogaster Meigen (Diptera: Drosophilidae). Experimental Gerontology. 1984. Vol. 77. P. 329–332.

De Magalhaes J. P. Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J. 2012. Vol. 26(12). P. 4821–4826. doi: 10.1096/fj.12-210872

Vaiserman A. M. Hormesis, adaptive epigenetic reorganization, and implications for human health and longevity. Dose Response. 2010. Vol. 8(1). P. 16–21. doi: 10.2203/dose-response.09-014.Vaiserman

Monaghan P., Haussmann M. F. The positive and negative consequences of stressors during early life. Early Hum. Dev. 2015. Vol. 91(11). P. 643–647. doi: 10.1016/j.earlhumdev.2015.08.008