Роль кореневої системи в посухотолерантності кукурудзи: анатомічні, фізіологічні, молекулярно-генетичні аспекти

  • Н. Е. Волкова Селекційно-генетичний інститут – Національний центр насіннєзнавства та сортовивчення, Україна, 65036, м. Одеса, вул. Овідіопольська дорога, 3
  • Г. І. Сліщук Селекційно-генетичний інститут – Національний центр насіннєзнавства та сортовивчення, Україна, 65036, м. Одеса, вул. Овідіопольська дорога, 3

Анотація

Огляд присвячено сучасному стану досліджень кореневої системи кукурудзи з точки зору її ролі в забезпеченні посухотолерантності та врожайності. Подається опис ідіотипу кореневої системи кукурудзи - оптимальної архітектури кореневої системи для ґрунтів з водним дефіцитом. Розглянуто молекулярно-генетичні аспекти зв’язку ознак кореневої системи кукурудзи з проявом посухотолерантності. Проаналізовано результати досліджень генів та локусів ознак кореневої системи кукурудзи, пов’язаних з забезпеченням посухотолерантності. Представлено інноваційний підхід, за допомогою якого оцінюють кореневі морфологічні ознаки, - автоматичний фенотиповий аналіз цифрового зображення кореневих систем рослин за використання програмного забезпечення; надано інформацію про відповідне програмне забезпечення. Створення «глибококореневих» (deeprooted) рослин вважається важливою стратегією для поліпшення отримання води і стабільності врожаю. Представлено програму Roots Power™, яка розроблена компанією «Евраліс Семенс» (Франція), в рамках якої створено перший гібрид кукурудзи ЕС Сенсор (ФАО 370), зі зміненими характеристиками кореневої системи, що забезпечує значну стійкість до посухи та вилягання, стабільність результатів урожайності.

Ключові слова: посухотолерантність, коренева система, кукурудза, гени, локуси кількісної ознаки

Посилання

Morgun V.V., Kiriziy D.A., Shadchina T.M. Ecophysiological and genetical aspects of crops adaptation to global climate changes. Fiziol. rast. genet. 2010. Vol. 42(1). P. 3-22.

Lyalko V.I., Yelistratova L. A., Apostolov A. A. Researches of problems of dryness in the territory of Ukraine with use of land and satellite information. Ukrainian journal of remote sensing. 2014. Vol. 2. P. 18–28.

Kul’bida M.I., Barabash M.B., Yelistratova L.O. et al. Klimat Ukrainy: u mynulomu i maibutniomu. Kyiv: Stal, 2009. P.85–98.

Tkalich Y.I., Tkalich I.D. Results of research into root system of winter wheat, corn, sunflower and buckwheat in the steppes of Ukraine. Byuleten Instytutu silskoho hospodarstva stepovoyi zony. 2015. No 8. P. 56-65.

Iefimenko T., Ternovska T. Genetic control of plant root system architecture development and its relation to winter hardiness. Naukovi zapysky NaUKMA. Biolohiya ta ekolohiya. 2015. Vol. 171. P. 10-17.

Satbhai S., Ristova D., Busch W. Underground tuning: quantitative regulation of root growth. J. Exp. Bot. 2015. Vol. 66(4). P. 1099–1112. doi: 10.1093/jxb/eru529

Wilson H. Plant characters as indices in relation to the ability of corn strains to withstand lodging. J. Amer. Soc. Agron. 1930. Vol. 22. P. 453-458.

Gaufichon L., Prioul J., Bachelier B. What are the prospects for genetic improvement in drought-tolerant crops? Fondation FARM, Paris, France, 2010. 58 p.

Anderson E. Corn root growth and distribution as influenced by tillage and nitrogen fertilization. Agronomy J. 1987. Vol. 79. P. 544-549.

Aslam M., Zamir M., Afzal I. et al. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetari Agronomice in Moldova. 2013. Vol. XLVI, No. 2 (154). P. 99-114.

Vadez V. Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Res. 2014. Vol. 165. P. 15–24. DOI: 10.1016/j.fcr.2014.03.017

Lynch J. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013. Vol. 112. P. 347–357. doi: 10.1093/aob/mcs293

Zhan A., Schneider H., Lynch J. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol. 2015. Vol. 168. P. 1603–1615. doi: 10.1104/pp.15.00187

Herder G., Van Isterdael G., Beeckman T. et al. The roots of a new green revolution. Trends Plant Sci. 2010. Vol. 15. P. 600–607. doi: 10.1016/j.tplants.2010.08.009

Eshel A., Beeckman T. Plant roots. The hidden half. CRC Press, NY, USA, 2013. 450 p.

Kumar B., Abdel-Ghani A., Reyes-Matamoros J. et al. Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines. Plant Breed. 2012. Vol. 131. P. 465–478. doi: 10.1007/s10681-012-0759-0

Pace J., Lee N., Naik H. et al. Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PLoS One. 2014. Vol. 9. e108255. doi: 10.1371/journal.pone.0108255

Das A., Schneider H., Burridge J. et al. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods. 2015. Vol. 11(51). 12 p. doi: 10.1186/s13007-015-0093-3

Lobet G., Page`s L., Draye X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 2011. Vol. 157. P. 29-39. DOI: 10.1104/pp.111.179895

Comas L., Becker S., Cruz V. et al. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013. Vol. 4. Article 442. 16 p. doi: 10.3389/fpls.2013.00442

Cooper M., van Eeuwijk F., Hammer G. et al. Modeling QTL for complex traits: detection and context for plant breeding. Curr. Opin. Plant Biol. 2009. Vol. 12. P. 231-240. doi: 10.1016/j.pbi.2009.01.006

Hochholdinger F. The maize root system: morphology, anatomy, and genetics. Handbook of maize: Its biology. Springer New York, USA, 2009. P. 145-160.

Pace J., Gardner C., Romay C. et al. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics. 2015. Vol. 16(47). 12 p. doi: 10.1186/s12864-015-1226-9

Giuliani S., Sanguineti M., Tuberosa R. et al. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J. Exp. Bot. 2005. Vol. 56. P. 3061–3070. doi: 10.1093/jxb/eri303

Giuliani S., Clarke J., Kreps J. et al. Microarray analysis of backcrossed-derived lines differing for root-ABA1, a major QTL controlling root characteristics and ABA concentration in maize. In: Proceedings of the International congress in the wake of the double helix: from the Green revolution to the gene revolution. Bologna: Avenue Media, 2005. P. 463–490.

Hochholdinger F., Tuberosa R. Genetic and genomic dissection of maize root development and architecture. Curr. Opin. Plant Biol. 2009. Vol. 12. P. 172–177. doi: 10.1016/j.pbi.2008.12.002

Landi P., Giuliani S., Salvi S. et al. Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J. Exp. Bot. 2010. Vol. 61. P. 3553–3562. doi:10.1093/jxb/erq192

Ruta N., Stamp P., Liedgens M. et al. Collocations of QTLs for seedling traits and yield components of tropical maize under water stress conditions. Crop Sci. 2010. Vol. 50. P. 1385–1392. doi: 10.2135/cropsci2009.01.0036

Rahman H., Pekic S., Lazic-Jancic V. et al. Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Gen. Mol. Res. 2011. Vol. 10, No 2. P. 889-901. doi: 10.4238/vol10-2gmr1139

Cai H., Chen F., Mi G. et al. Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theor. Appl. Genet. 2012. Vol. 125. P. 1313–1324. doi: 10.1007/s00122-012-1915-6

Burton A., Johnson J., Foerster J. et al] QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Theor. Appl. Genet. 2015. Vol. 128. P. 93–106. doi: 10.1007/s00122-014-2414-8

Chaumont F., Tyerman S. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol. 2014. Vol. 164. P. 1600–1618. doi: 10.1104/pp.113.233791.

Chaumont F., Barrieu F., Wojcic E. et al. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 2001. Vol. 125. P. 1206–1215.

Gu R., Chen X., Zhou Y. et al. Isolation and characterization of three maize aquaporin genes, mNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport. BMB reports. 2012. Vol. 1. P. 96-101. doi: 10.5483/BMBRep.2012.45.2.96

Bienert G., Heinen R., Berny M. et al. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta. 2014. Vol. 1838. P. 216–222. doi: 10.1016/j.bbamem.2013.08.011

Hachez C., Moshelion M., Zelazny E. et al. Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol. Biol. 2006. Vol. 62. P. 305–323. doi: 10.1007/s11103-006-9022-1

Hukin D., Doering-Saad C., Thomas C. et al. Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta. 2002. Vol. 215. P. 1047–1056. doi: 10.1007/s00425-002-0841-2

Obrucheva N., Sinkevich I. Akvaporiny i rost kletok. Fiziol. rast. 2010. Vol. 57(2). P. 163-176.

Barzana G., Aroca R., Bienert G. et al. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant-Microbe Interact. 2014. Vol. 27(4). P. 349–363. doi: 10.1094/MPMI-09-13-0268-R

Meister R., Rajani M., Ruzicka D. et al. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 2014. Vol. 19(12). P. 779–788. doi: 10.1016/j.tplants.2014.08.005

Recent progress in drought tolerance: from genetics to modeling. Conference Handbook. Montpellier, France, 08-12.06.2015. 164 p.