Асоціація поліморфних варіантів генів фолатного обміну з анеуплоїдіями у спермі у чоловіків зі зниженою репродуктивною функцією

  • О. М. Федота ХНУ ім. В.Н. Каразіна, Україна, 61000, Харків, пл. Свободи, 4
  • О. М. Феськов Центр репродукції людини «Клініка професора Феськова О.М.», Україна, 61098, Харків, вул. Єлізарова, 15
  • Є. С. Жилкова ХНУ ім. В.Н. Каразіна, Україна, 61000, Харків, пл. Свободи, 4; Центр репродукції людини «Клініка професора Феськова О.М.», Україна, 61098, Харків, вул. Єлізарова, 15

Анотація

Мета. Дослідити асоціацію поліморфних варіантів генів MTHFR (C677T, A1298C) та MTRR (A66G) з якісними показниками сперми у чоловіків з порушеннями репродуктивної функції. Методи. Визначення однонуклеотидних генетичних поліморфізмів SNPs проведено методом ПЛР в реальному часі. Рівень фрагментації ДНК в спермі виявлено за допомогою методу хроматинової дисперсії. Анеуплоїдію в спермі досліджено методом флуоресцентної гібридизації in situ (FISH). Результати. Поліморфні алелі генів фолатного обміну асоційовані з анеуплоїдією в спермі у чоловіків із порушеною репродуктивною функцією. Доведено зв'язок між кількістю поліморфних алелів A1298C гену MTHFR у генотипі та рівнем анеуплоїдії хромосоми 16 в спермі. Висновки. Анеуплоїдна сперма здатна до запліднення ооцитів, але подальше формування бластоцист та імплантація ембріонів можуть бути блоковані на різних стадіях розвитку. Розуміння генетичних причин анеуплоїдії сперми дозволить зменшити репродуктивні втрати у практиці ЕКЗ.

Ключові слова: фрагментація ДНК, анеуплоїдія сперми, MTHFR, MTRR, репродуктивна функція.

Посилання

In vitro fertilization and new directions in the treatment of male and female infertility (theoretical and practical approaches): A guide for physicians, 2nd ed. Eds. Kulakov V.I., Leonov B.V. Moskva: Medical Information Agency, 2004. 781 p.

Dohle G.R., Diemer T., Giwercm A. et al. Male infertility Ed. Hakobyan A.S. European Association of Urology, 2010. 68 p.

Kurilo L.F., Shileiko L.V., Sorokina T.M., Grishina E.M. The structure of inherited disorders of the reproductive system. West RAMS. 2000. No 5. P. 32–36.

Dolgov V.V., Lugovskaya S.A., Fanchenko N.D. Laboratory diagnosis of male infertility. Moskva: Triada, 2006. 146 p.

Brahem S., Mehdi M., Elgheza A., Saad A. Detection of DNA fragmentation and meiotic segregation in human with isolated Teratozoospermia. J. Assist. Reprod. Genet. 2011. Vol. 28(1). P. 41–48. doi: 10.1007/s10815-010-9482-8

Speyer B.E., Pizzey A.R., Ranieri M. et al. Fall in implantation rates following ICSI with sperm with high DNA fragmentation. Hum. Reprod. 2012. Vol. 25(7). P. 1609–1618. doi: 10.1093/humrep/deq116

Simon L., Brunborg G., Stevenson M., Lutton D. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum. Reprod. 2010. Vol. 25(7). P.1594–1608. doi: 10.1093/humrep/deq103

El-Sayed A.M., Myung-Geol P. Sperm aneuploidy and male fertility. In: Aneuploidy: etiology, disorders and risk factors. Nova Biomedical, 2012. P. 144–159.

Calogero A.E., Burrello N., De Palma A. et al. Sperm aneuploidy in infertile men. Reprod. Biomed. Online. 2003. Vol. 6(3). P. 310–317. doi: 10.1016/S1472-6483(10)61850-0

Mehdi M., Gmidene A., Brahem S. et al. Aneuploidy rate in spermatozoa of selected men with severe Teratozoospermia. Andrologia. 2012. Vol. 44(1). P. 139–143. doi: 10.1111/j.1439-0272.2010.01152.x

Mehdi M., Smatti B., Saad A. et al. Analysis by fluorescence in situ hybridization (FISH) of the relationship between gonosomic aneuploidy and the results of assisted reproduction in men with severe Oligozoospermia. Andrologia. 2006. Vol. 38(4). P. 137–141. doi: 10.1111/j.1439-0272.2006.00727.x

Collodel G., Capitani S., Baccetti A. et al. Sperm aneuploidies and low progressive motility. Hum. Reprod. 2007. Vol. 22(7). P. 1893–1898. doi: 10.1093/humrep/dem099

Ramasamy R., Scovell J.M., Kovac J.R. et al. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertility and Sterility. 2015. Vol. 103(4). P. 906–909.e1. doi: 10.1016/j.fertnstert.2015.01.029

Hofherr S.E., Wiktor A.E., Kipp B.R. et al. Clinical diagnostic testing for the cytogenetic and molecular causes of male infertility: the Mayo Clinic experience. J. Assist. Reprod. Genet. 2011. Vol. 28(11). P. 1091–1098. doi: 10.1007/s10815-011-9633-6

Tempest H.G., Griffin D.K. The relationship between male infertility and increased levels of sperm disomy. Cytogenet. Genome Res. 2004. Vol. 107(1–2). P. 83–94. doi: 10.1159/000079575

Daval J.L., Gue´ant J.L., Forges T. et al. Impact of folate and homocysteine metabolism on human reproductive health. Human Reproduction. 2007. Vol. 13(3). P. 225 –238. doi: 10.1093/humupd/dml063

Shen O., Liu R., Wu W. et al. Association of the methylenetetrahydrofolate reductase gene A1298C polymorphism with male infertility: a meta-analysis. Ann. Hum. Genet. 2012. Vol. 76(1). P. 25–32. doi: 10.1111/j.1469-1809.2011.00691.x

Wei B., Xu Z., Ruan J. et al. MTHFR 677C>T and 1298A>C polymorphisms and male infertility risk: a meta-analysis. Mol. Biol. Rep. 2012. Vol. 39(2). P. 1997–2002. doi: 10.1007/s11033-011-0946-4

Hobbs C.A., Sherman S.L., Yi.P. et al. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am. J. Hum. Genet. 2000. No 67. P. 623–630. doi: 10.1086/303055

Altomare I., Adler A., Aledort L.M. The 5, 10 methylenetetrahydrofolate reductase C677T mutation and risk of fetal loss: a case series and review of the literature. Thromb J. 2007. Vol. 5(17). doi: 10.1186/1477-9560-5-17. doi: 10.1186/1477-9560-5-17

Shiny V., Dayanand C.D., Pushpa F.K. et al. Evidence of paternal N5, N10 - methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism in couples with recurrent spontaneous abortions (RSAs) in Kolar district- A south west of India. J. Clin. Diagn. Res. 2015. Vol. 9(2). P. BC15–BC18. doi: 10.7860/JCDR/2015/10856.5579

Vandana R. Polymorphism in folate metabolic pathway gene as maternal risk factor for Down syndrome. Int. J. Biol. Med. Res. 2011. Vol. 2(4). P. 1055 – 1060.

Asim A., Agarwal S., Kulkarni S.S., Panigrahi I. Folate metabolism and genetic variant in down syndrome: a meta- analysis. J. Genet. Syndr. Gene Ther. 2015. Vol. 6:3. doi: 10.4172/2157-7412.1000270

Oliveira K.D., Bianco B., Verreschi I.T.N. et al. Prevalence of the polymorphism MTHFR A1298C and not MTHFR C677T is related to chromosomal aneuploidy in Brazilian Turner Syndrome patients. Arq. Bras. Endocrinol. Metab. 2008. Vol. 52(8). doi: 10.1590/S0004-27302008000800028

Kolupayev E.V. The advantages of real-time PCR (Real Time PCR). Laboratory Medicine. 2002. No 5. P. 110–112.

Fedota O., Solodyankin O., Solodyankina O., Merenkova I. The structure of the population of the Kharkiv region of the gene polymorphism 677T MTHFR. Actual problems of obstetrics and gynecology, clinical. immunology and medical genetics. 2011. No 22. P. 332–342.

Tatarskyy P., Kucherenko A., Livshits L. Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine. Tsitol. Genet. 2010. Vol. 44(3). P129-133. doi: 10.3103/S0095452710030011

Chorna L.B., Makuch G.V., Hakopyan G.R. et al. Analysis of polymorphic variants of genes MTHFR, MTR, MTRR gene mutation and FV and FII blood clotting among women with miscarriage. Bulletin of Kharkiv Karazin National University. Series: Biology. 2011. No 13. P. 947–956.

Shaffer K.G., Slovak M.L., Campbell L.J. ISCN 2009. An international system for human cytogenetic nomenclature. Basel: Karger, 2009. 138 p.

Atramentova L.O., Utevska O.M. Methods of statistics in biology. Kharkiv, 2007. 286 p.

Jungwirth A., Diemer T., Dohle G.R. et al. Guidelines on male infertility. European Association of Urology, 2014. 60 p.

Shi Q., Martin R.H. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men. Reproduction. 2001. Vol. 121(5). P. 655–666.

Zhylkova I., Feskov O., Fedota O., Blazhko O. Analysis of polymorphic variants G919A and A2039G of the gene FSHR in men with low fertility function in the East Ukrainian population. Bulletin of Biology and Medicine. 2015. Vol. 1(124). P. 182 – 187.

Lozinska M.R. The role of genetic factors in the diseases of intestine with high risk of colorectal cancer occurrence. Manuscript. Thesis for the Doctor of Biological science degree in speciality 03.00.15 – genetics. SI «National Research Center for Radiation Medicine of NAMSU». Kyiv, 2014, 40 p.

Shannon B., Gnanasampanthan S., Beilby J., Iacopetta B. A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut. 2002. No 50. P. 520–524. doi: 10.1136/gut.50.4.520

Marchand L.L., Wilkens L.R., Kolonel L.N., Henderson B.E. The MTHFR C677T polymorphism and colorectal cancer: the multiethnic cohort study. Cancer Epidemiol. Biomarkers Prev. 2005. Vol. 14(5). P. 1198–1203. doi: 10.1158/1055-9965.EPI-04-0840

Fedota O.M. Genodermatosis in the study of the problems of human genetic safety. Manuscript. The dissertation thesis for the scientific degree of the doctor of biological sciences, speciality 03.00.15 - genetics. SI «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Kyiv, 2012, 40 p.

Nazarko I.M., Akopyan G.R., Andreev E.V. The first results of studies of homocysteine and polymorphic variants of folate genes in Ukrainian patients with coronary heart disease. Actual. problems of obstetrics and gynecology, clinical immunology and medical genetics. 2011. No 21. P. 358–366.

Malerba M. Plasma homocysteine and folate levels in patients with chronic plaque psoriasis. Brit. J. Dermatol. 2006. Vol. 155(6). P. 1165–1169. doi: 10.1111/j.1365-2133.2006.07503.x

Cakmak S.K. Homocysteine, vitamin B 12 and folic acid levels in psoriasis patients. J. Eur. Acad. Dermatol. Venereol. 2009. Vol. 23(3). P. 300–303. doi: 10.1111/j.1468-3083.2008.03024.x

Brazzelli V. Homocysteine, vitamin B 12 and folic acid levels in psoriatic patients and correlation with disease severity. Int. J. Immunopathol. Pharmacol. 2010. Vol. 23(3). P. 911–916. doi: 10.1177/039463201002300327

Strauss E. Compound heterozygosity of MTHFR (677Ct/1298Ac) protects, both normotensive and hypertensive males with cad, against the left ventricular systolic heart insufficiency. J. Hypertension. 2010. Vol. 28. e344. doi: 10.1097/01.hjh.0000379249.14668.c8

Beskorovainaya T.S., Tkachenko C.V., Tverskaya S.M., Polyakov A.V. Association of polymorphic alleles of folate genes with habitual miscarriage. Problems of Reproduction. 2006. No 1. P. 53–60.

Martin D., Boersma B.J., Howe T.M., Goodman J.E., Mechanic L.E., Chanock S.J., Ambs S. Association of MTHFR gene polymorphisms with breast cancer survival BMC. Cancer. 2006. Vol. 6: 257. doi: 10.1186/1471-2407-6-257

Kloss M., Wiest T., Hyrenbach S., Werner I., Arnold M.L., Lichy C., Grond-Ginsbach C. MTHFR 677TT genotype increases the risk for cervical artery dissections. J. Neurol. Neurosurg. Psychiatry. 2006. Vol. 77(8). P. 951–952. doi: 10.1136/jnnp.2006.089730

Hassold T.J., Burrage L.C., Chan E.R. et al. Maternal folate polymorphisms and the etiology of human nondisjunction. Am. J. Hum. Genet. 2001. Vol. 69(2). P. 434–439. doi: 10.1086/321971

O'Leary V.B., Parle-McDermott A., Molloy A.M. et al. MTRR and MTHFR polymorphism: link to Down syndrome? Am. J. Med. Genet. 2002. Vol. 107(2). P. 151–155. doi: 10.1002/ajmg.10121

Wilcken B., Bamforth F., Li Z. Geographical and ethnic variation of the 677 C-T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J. Med. Genet. 2003. Vol. 40(8). P. 619–625. doi: 10.1136/jmg.40.8.619

Johnson C., Little J. Folate intake, markers of folate status and oral clefts: is the evidence converging? Int. J. Epidemiol. 2008. Vol. 37(5). P. 1041–1058. doi: 10.1093/ije/dyn098

Wehby G.L., Murray J.C. Folic acid and orofacial clefts: a review of the evidence. Oral. Dis. 2010. Vol. 16(1). P. 11–19. doi: 10.1111/j.1601-0825.2009.01587.x

Zetterberg H., Regland B., Palmer M. et al. Increased frequency of combined methylenetetrahydrofolate reductase C 677 T and A 1298 C mutated alleles in spontaneously aborted embryos. Eur. J. Hum. Genet. 2002. Vol. 10(10). P. 578–579. doi: 10.1038/sj.ejhg.5200767

Bagheri M., Abdirad I., Omrani M.D., Nan Bakhsh F. C677T MTHFR and А1298С mutations in the methylenetetrahydrofolate reductase gene in patients with recurrent abortion from the Iranian Azeri Turkish. Int. J. Fert. Ster. 2010. Vol. 4(3). P. 134–139.

Fogel F., Motulsky A. Human Genetics. In 3 vols. Moscow: Mir, 1990.

Petracchi F., Igarzabal L., Crespo M.L., Gadow E. Trisomy 16 detected by first trimester screening. Prenatal Diagnosis. 2009. Vol. 29(12). P. 1175–1176. doi: 10.1002/pd.2369

Yong P.J., Barrett I.J., Kalousek D.K., Robinson W.P. Clinical aspects, prenatal diagnosis, and pathogenesis of trisomy 16 mosaicism. J. Med. Genet. 2003. No 40. P. 175–182. doi: 10.1136/jmg.40.3.175

Artukhova V.G., Lebedev I.N., Markova E.V. et al. Origin of autosomal monosomy in early stages of preimplantation embryo development. Reproductive BioMedicine Online. 2008. Vol. 16, Suppl. 3. P. s39. doi: 10.1016/S1472-6483(10)61388-0

Dolgushina N.V., Ratushnyak S.S., Sokur S.P. et al. The risk of aneuploidy embryos in ART in men with patozoospermia (meta-analysis). Obstetrics and gynecology. 2012. No 7. P. 4–13.

Magli M.C., Gianaroli L., Ferraretti A.P. et al. Paternal contribution to aneuploidy in preimplantation embryos. Reprod. Biomed .Online. 2009. Vol. 18(4). P. 536–542. doi: 10.1016/S1472-6483(10)60131-9