Гени, що детермінують посухостійкість пшениці м'якої (Triticum aestivum L.)
Анотація
Метою роботи є розгляд молекулярних механізмів стійкості рослин до абіотичного стресу та ролі певних генів, що задіяні у детермінації посухостійкості рослин, зокрема пшениці м’якої. Стійкість рослин до абіотичних та біотичних чинників середовища пов’язана з активацією складного каскаду фосфорилювання / дефосфорилювання білків, опосередкованого протеїнкіназами та фосфатазами. Результатом цього сигнального каскаду є активація / пригнічення факторів транскрипції, які здатні регулювати експресію певних генів, що безпосередньо пов’язані з адаптацією рослин до абіотичного стресу. Транскрипційні фактори можна класифікувати на 60 родин на основі схожості первинної та тривимірної структури доменів зв’язування з ДНК, проте найбільш вивченими на сьогодні є 8: AP2/ERF, MYB, bHLH, NAC, WRKY, bZIP, HSF та HDZip. В огляді розглянуто особливості відповіді рослин, зокрема м’якої пшениці, на абіотичний стрес, спричинений посухою. Окремо розглянуто регуляцію активності транскрипційних факторів під час абіотичного стресу – у межах складної реакції рослин на осмотичний стрес, що утворюється безліччю шляхів, комбінація яких забезпечує часові та просторові моделі експресії генів, які відіграють велику роль в миттєвій адаптації до водного дефіциту м’якої пшениці.
Посилання
Åkerfelt M., Morimoto RI., Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nature reviews molecular cell biology. 2010. Vol. 11(8). P. 545–555. doi:10.1038/nrm2938
Akhtar M., Jaiswal A., Taj G., Jaiswal J.P., Qureshi M.I., Singh N.K. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. Journal of Genetics. 2012. Vol. 91(3). P. 385–395. doi: 10.1007/s12041-012-0201-3
Alonso JM., Stepanova AN., Leisse TJ., Kim CJ., Chen H., et all. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003. Vol. 301(5633). P. 653–657. doi: 10.1126/science.1086391
Ambawat S., Sharma P., Yadav NR., Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants. 2013. Vol. 19(3). P. 307–321. doi: 10.1007/s12298-013-0179-1
Aukerman J., Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant cell. 2003. Vol. 15(11). P. 2730–2741. doi: 10.1105/tpc.016238
Baillo E., Kimotho R., Zhang Z. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes. 2019. Vol. 10(10). P. 771. doi: 10.3390/genes10100771
Bavol А. V., Zinchemko M. O., Dubrovna O. V. Molecular polymorphism of wheat cell lines resistant to metabolites produced by Gaeumannomyces graminis var. Tritici under the effect of osmotic stress. Cytology and Genetics. 2014. Vol. 48(1). P. 49–54. doi: 10.3103/s0095452714010022.
Borrill P., Harrington S., Uauy C. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. Genes|Genomes|Genetics. 2017. Vol. 7(9). P. 3019–3029. doi: 10.1534/g3.117.043679
Campos F., Cuevas-Velazquez C., Fares MA., Reyes JL., Covarrubias AA. Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Molecular Genetics and Genomics. 2013. Vol. 288(10). P. 503–517. doi: 10.1007/s00438-013-0768-2
Chen X., Li C., Wang H., Guo Z. WRKY transcription factors: evolution, binding, and action. Phytopathology research. 2019. Vol. 1(1). 13. doi: 10.1186/s42483-019-0022-x
Chevalier BS., Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Research. 2001. Vol. 29(18). P. 3757–3774. doi: 10.1093/nar/29.18.3757.
Dossa K., Wei X., Li D., Fonceka D., Zhang Y., Wang L., Yu J., Boshou L., Diouf D., Cissé N., Zhang X. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biology. 2016. Vol. 16(1). doi: 10.1186/s12870-016-0859-4
Duval M., Hsieh TF., Kim SY., Thomas TL. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology. 2002. Vol. 50(2). P. 237–248. doi: 10.1023/a:1016028530943
Egawa C., Kobayashi F., Ishibashi M., Nakamura T., Nakamura C., Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes & Genetic Systems. 2006. Vol. 81(2). P. 77–91. doi: 10.1266/ggs.81.77
Elhiti M., Stasolla C. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signaling & Behavior. 2009. Vol. 4(2). P. 86–88. doi: 10.4161/psb.4.2.7692
Fujimoto SY., Ohta M., Usui A., Shinshi H., Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. The Plant cell. 2000. Vol. 12(3). P. 393. doi: 10.2307/3870944.
Ganeshan S., Vitamvas P., Fowler DB., Chibbar RN. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. Journal of Experimental Botany. 2008. Vol. 59(9). P. 2393–2402. doi: 10.1093/jxb/ern112.
Gatz C. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Molecular Plant-Microbe Interactions. 2013. Vol. 26(2). P. 151–159. doi: 10.1094/mpmi-04-12-0078-ia
Grunewald W., De Smet I., Lewis DR., Löfke C., Jansen L., et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proceedings of the National Academy of Sciences. 2012. Vol. 109(5). P. 1554–1559. doi: 10.1073/pnas.1121134109.
Guérin C., Roche J., Allard V., Ravel C., Mouzeyar S., Bouzidi MF. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLOS ONE. 2019. Vol. 14(3). P. E0213390. doi: 10.1371/journal.pone.0213390.
Guo B., Wei Y., Xu R., Lin S., Luan H., Lv C., Zhang X., Song X., Xu R. Genome-wide analysis of APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLOS ONE. 2016. Vol. 11(9). P. E0161322. doi: 10.1371/journal.pone.0161322.
Guo C., McDowell I.C., Nodzenski M., Scholtens D.M., Allen A.S., Lowe W.L., Reddy T.E. Transversions have larger regulatory effects than transitions. BMC Genomics. 2017. Vol. 18(1). doi: 10.1186/s12864-017-3785-4.
Guo Y., Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal. 2006. Vol. 46(4). P. 601–612. doi: 10.1111/j.1365-313x.2006.02723.x.
Hand SC., Menze MA., Toner M., Boswell L., Moore D. LEA proteins during water stress: not just for plants anymore. Annual Review of Physiology. 2011. Vol. 73(1). P. 115–134. doi: 10.1146/annurev-physiol-012110-142203.
Hao Y., Hao M., Cui Y., Kong L., Wang H. Genome-wide survey of the dehydrin genes in bread wheat (Triticum aestivum L.) and its relatives: identification, evolution and expression profiling under various abiotic stresses. BMC Genomics. 2022. Vol. 23(1). doi: 10.1186/s12864-022-08317-x.
Hong-Bo S., Zong-Suo L., Ming-An S. LEA proteins in higher plants: Structure, function, gene expression and regulation. Colloids and Surfaces B. Biointerfaces. 2005. Vol. 45(3-4). P. 131–135. doi: 10.1016/j.colsurfb.2005.07.017.
Hrmova M., Hussain S. Plant transcription factors involved in drought and associated stresses. International Journal of Molecular Sciences. 2021. Vol. 22(11). P. 5662. doi: 10.3390/ijms22115662.
Hu YX., Wang YX., Liu XF., Li JY. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research. 2004. Vol. 14(1). P. 8–15. doi: 10.1038/sj.cr.7290197.
Jofuku K.D., Omidyar P.K., Gee Z., Okamuro J.K. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proceedings of the National Academy of Sciences. 2005. Vol. 102(8). P. 3117–3122. doi: 10.1073/pnas.0409893102.
Jones JD., Dangl JL. The plant immune system. Nature. 2006. Vol. 444(7117). P. 323–329. doi: 10.1038/nature05286.
Kim SG., Kim SY., Park CM. A membrane-associated NAC transcription factor regulates salt-responsive flowering via flowering locus T in Arabidopsis. Planta. 2007. Vol. 226, No. 3. P. 647–654. doi:10.1007/s00425-007-0513-3.
Kim YS., Kim SG., Park JE., Park HY., Lim MH., Chua NH., Park CM. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. The Plant Cell. 2006. Vol. 18(11). P. 3132–3144. doi: 10.1105/tpc.106.043018.
Ko JH., Yang SH., Park AH., Lerouxel O., Han KH. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. The Plant Journal. 2007. Vol. 50(6). P. 1035–1048. doi: 10.1111/j.1365-313x.2007.03109.x.
Lee SJ., Kang JY., Park HJ., Kim MD., Bae MS., Choi HI., Kim SY. DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiology. 2010. Vol. 153(2). P. 716–727. doi: 10.1104/pp.110.154617.
Li H., Wang Y., Wu M., Li L., Li C., Han Z., Yuan J., Chen C., Song W., Wang C. Genome-wide identification of AP2/ERF transcription factors in cauliflower and expression profiling of the ERF family under salt and drought stresses. Frontiers in Plant Science. 2017. Vol. 8. doi: 10.3389/fpls.2017.00946.
Li P., Yang H., Wang L., Liu H., Huo H., Zhang C., Liu A., Zhu A., Hu J., Lin Y., Liu L. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Frontiers in Genetics. 2019. Vol. 10. doi: 10.3389/fgene.2019.00055.
Li X., Gao S., Tang Y., Li L., Zhang F., Feng B., Fang Z., Ma L., Zhao C. Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics. 2015. Vol. 16(1). doi: 10.1186/s12864-015-2196-7.
Liu H., Xing M., Yang W., Mu X., Wang X., Lu F., Wang Y. Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Scientific Reports. 2019. Vol. 9(1). doi: 10.1038/s41598-019-49759-w.
Liu M., Wang Z., Xiao HM., Yang Y. Characterization of TaDREB1 in wheat genotypes with different seed germination under osmotic stress. Hereditas. 2018. Vol. 155(1). doi: 10.1186/s41065-018-0064-6.
Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell. 1998. Vol. 10(8). P. 1391. doi: 10.2307/3870648.
Lv S., Guo H., Zhang M., Wang Q., Zhang H., Ji W. Large-scale cloning and comparative analysis of TaNAC genes in response to stripe rust and powdery mildew in wheat (Triticum aestivum L.). Genes. 2020. Vol. 11(9). P. 1073. doi: 10.3390/genes11091073.
Ma J., Tang X., Sun B., Wei J., Ma L., Yuan M., Zhang D., Shao Y., Li C., Chen K., Jiang L. A NAC transcription factor, TaNAC5D-2, acts as a positive regulator of drought tolerance through regulating water loss in wheat (Triticum aestivum L.). Environmental and Experimental Botany. 2022. Vol. 196. P. 104805. doi: 10.1016/j.envexpbot.2022.104805.
Ma Z., Hu L., Jiang W. Understanding AP2/ERF transcription factor responses and tolerance to various abiotic stresses in plants: a comprehensive review. International Journal of Molecular Sciences. 2024. Vol. 25(2). P. 893. doi: 10.3390/ijms25020893.
Magnani E., Sjölander K., Hake S. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. The Plant Cell. 2004. Vol. 16(9). P. 2265–2277. doi: 10.1105/tpc.104.023135.
Pont C., Murat F., Guizard S., Flores R., Foucrier S., Bidet Y., Quraishi U.M., Alaux M., Doležel J., Fahima T., Budak H., Keller B., Salvi S., Maccaferri M., Steinbach D., Feuillet C., Quesneville H., Salse J. Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. The Plant Journal. 2013. Vol. 76(6). P. 1030–1044. doi: 10.1111/tpj.12366.
Protopish I.G. Formation of yield and grain quality of winter wheat depending on sowing time, precursors and varieties in the terms of right bank forest-steppes. Dissertation abstract of Candidate of agricultural sciences. Vinnytsia, 2016. [In Ukrainian].
Riaz M., Lu J., Shah L., Yang L., Chen C., Mei X., Xue L., Manzoor M., Abdullah M., Rehman S., Si H., Ma C. Expansion and molecular characterization of AP2/ERF gene family in wheat (Triticum aestivum L.). Frontiers in Genetics. 2021. Vol. 12. doi: 10.3389/fgene.2021.632155
Sazegari S., Niaz A. Isolation and molecular characterization of wheat (Triticum aestivum) dehydration responsive element binding factor (DREB) isoforms. Australian Journal of Crop Science. 2012. Vol. 6(6). P. 1037–1044. doi: 10.3316/informit.734240474168720.
Seo E., Choi D. Functional studies of transcription factors involved in plant defenses in the genomics era. Briefings in Functional Genomics. 2015. Vol. 14(4). P. 260–267. doi: 10.1093/bfgp/elv011.
Shao H., Wang H., Tang X. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Frontiers in Plant Science. 2015. Vol. 6. doi: 10.3389/fpls.2015.00902.
Sharuk Yu.A., Chebotar S.V. Bioinformatic analysis of DREB genes of drought resistance of soft wheat Triticum aestivum L. International scientific internet conference "Actual problems of plant genetics, biotechnology and biochemistry". Abstracts of reports of the International Scientific Internet Conference. 19.10 2023. P. 39-40. Odesa.
Singh D., Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science. 2015. Vol. 6. doi: 10.3389/fpls.2015.00895.
Sornaraj P., Luang S., Lopato S., Hrmova M. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: a molecular model of a wheat bZIP factor and implications of its structure in function. Biochimica et Biophysica Acta (BBA) – General Subjects. 2016. Vol. 1860(1). P. 46–56. doi: 10.1016/j.bbagen.2015.10.014.
Sperotto R.A., Ricachenevsky F.K., Duarte G.L., Boff T., Lopes K.L., Sperb E.R., Grusak M.A., Fett J.P. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta. 2009. Vol. 230(5). P. 985–1002. doi: 10.1007/s00425-009-1000-9.
Strandberg A.K., Salter L.A. A comparison of methods for estimating the transition:transversion ratio from DNA sequences. Molecular Phylogenetics and Evolution. 2004. Vol. 32(2). P. 495–503. doi: 10.1016/j.ympev.2004.01.013.
Sukumaran S., Lethin J., Liu X., Pelc J., Zeng P., Hassan S., Aronsson H. Genome-wide analysis of MYB transcription factors in the wheat genome and their roles in salt stress response. Cells. 2023. Vol. 12(10). P. 1431. doi:10.3390/cells12101431.
Tolosa L., Zhang Z. The role of major transcription factors in solanaceous food crops under different stress conditions: current and future perspectives. Plants. 2020. Vol. 9(1). P. 56. doi: 10.3390/plants9010056.
Trono D., Pecchioni N. Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, salinity, and extreme temperatures in wheat: An overview. Plants. 2022. Vol. 11(23). P. 3358. doi: 10.3390/plants11233358.
Wang H., Avci U., Nakashima J., Hahn M.G., Chen F., Dixon R.A. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences. 2010. Vol. 107(51). P. 22338–22343. doi: 10.1073/pnas.1016436107.
Wang H., Zhu Y., Yuan P., Song S., Dong T., Chen P., Duan Z., Jiang L., Lu L., Duan H. Response of wheat DREB transcription factor to osmotic stress based on DNA methylation. International Journal of Molecular Sciences. 2021. Vol. 22(14). P. 7670. doi: 10.3390/ijms22147670.
Wang J., Zhou J., Zhang B., Vanitha J., Ramachandran S., Jiang S. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. Journal of Integrative Plant Biology. 2011. Vol. 53(3). P. 212–231. doi: 10.1111/j.1744-7909.2010.01017.x .
Wang L., Xiang L., Hong J., Xie Z., Li B. Genome-wide analysis of bHLH transcription factor family reveals their involvement in biotic and abiotic stress responses in wheat (Triticum aestivum L.). 3 Biotech. 2019. Vol. 9(6). doi: 10.1007/s13205-019-1742-4.
Wang Y., Xu H., Zhu H., Tao Y., Zhang G., Zhang L., Zhang C., Zhang Z., Ma Z. Classification and expression diversification of wheat dehydrin genes. Plant Science. 2014. Vol. 214. P. 113–120. doi: 10.1016/j.plantsci.2013.10.005.
Wang Z., Smith C.E., Atchley W.R. Application of complex demodulation on bZIP and bHLH-PAS protein domains. Mathematical Biosciences. 2007. Vol. 207(2). P. 204–218. doi: 10.1016/j.mbs.2007.01.004.
Wei B., Jing R., Wang C., Chen J., Mao X., Chang X., Jia J. Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Molecular Breeding. 2009. Vol. 23(1). P. 13–22. doi: 10.1007/s11032-008-9209-z.
Xu Y., Sun F.Y., Ji C., Hu Q.W., Wang C.Y., Wu D.X., Sun G. Nucleotide diversity patterns at the DREB1 transcriptional factor gene in the genome donor species of wheat (Triticum aestivum L.). PLOS ONE. 2019. Vol. 14(5). P. E0217081. doi: 10.1371/journal.pone.0217081.
Xue G.-P., Drenth J. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. Journal of Experimental Botany. 2014. Vol. 66(3). P. 1025–1039. doi: 10.1093/jxb/eru462.
Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell. 1994. Vol. 6(2). P. 251. doi: 10.2307/3869643.
Yue H., Shu D., Wang M., Xing G., Zhan H., Du X., Song W., Nie X. Genome-Wide Identification and Expression Analysis of the HD-Zip Gene Family in Wheat (Triticum aestivum L.) Genes. 2018. Vol. 9(2). P. 70. doi: 10.3390/genes9020070.
Zhang Q., Geng J., Du Y., Zhao Z., Zhang W., Fang Q., Yin Z., Li J., Yuan X., Fan Y., Cheng X., Du J. Heat shock transcription factor (Hsf) gene family in common bean (Phaseolus vulgaris): genome-wide identification, phylogeny, evolutionary expansion and expression analyses at the sprout stage under abiotic stress. BMC Plant Biology. 2022. Vol. 22(1). doi: 10.1186/s12870-021-03417-4.
Zuo Z.-F., Lee H.Y., Kang H.G. Basic helix-loop-helix transcription factors: regulators for plant growth development and abiotic stress responses. International Journal of Molecular Sciences. 2023. Vol. 24(2). P. 1419. doi: 10.3390/ijms24021419.