Організація та поліморфізм міжгенного спейсера 5S рДНК терену колючого (Prunus spinosa L.)

  • Ю. О. Тинкевич Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського, 2, м. Чернівці, 58012, Україна
  • Л. В. Козуб Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського, 2, м. Чернівці, 58012, Україна
  • Р. А. Волков Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського, 2, м. Чернівці, 58012, Україна

Анотація

Мета. Повторювані одиниці 5S рДНК складаються з консервативних ділянок, які кодують 5S рРНК, і мінливих міжгенних спейсерів – intergenic spacers (IGS). Послідовності IGS часто використовуються як молекулярні маркери для філогенетичних, філогеографічних та мікроеволюційних досліджень таксонів низького рангу. Проте, ця область геному все ще залишається неописаною для більшості родів родини Rosaceae. У цій статті ми представляємо перші результати дослідження молекулярної організації та поліморфізму IGS для широко розповсюдженого представника родини Rosaceae, Prunus spinosa. Методи. ПЛР-ампліфікація, клонування та сиквенування 5S рДНК, біоінформатичний аналіз. Результати. IGS 5S рДНК P. spinosa клонували та порівнювали з IGS трьох інших представників роду Prunus. Встановлено, що наявні в геномі P. spinosa варіанти IGS відрізняються кількістю субповторів, розташованих на 5’-кінці. Кожен з цих субповторів містить сигнал термінації транскрипції РНК Pol III. Послідовності IGS видів роду Prunus еволюціонують переважно шляхом накопичення нуклеотидних замін. Рівень внутрішньогеномної подібності IGS P. spinosa становить 96.5-100%, тоді як подібність між IGS різних видів Prunus коливається від 73.0 до 87.3%. Висновки. IGS 5S рДНК є перспективним маркером для філогенетичних і таксономічних досліджень в роді Prunus.
Ключові слова: 5S рДНК, молекулярна еволюція, Prunus spinosa.

Посилання

Alioto T. Alexiou K.G., Bardil A., Barteri F. et al. Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J. 2020. Vol. 101(2). P. 455-472. doi: 10.1111/tpj.14538

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997. Vol. 25(17). P. 3389-3402. doi: 10.1093/nar/25.17.3389

Aranzana M.J., Decroocq V., Dirlewanger E., Eduardo I. et al. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Hortic. Res. 2019. Vol. 6(1). P. 1-25. doi.org/10.1038/s41438-019-0140-8

Baek S., Choi K., Kim G.B., Yu H.J. et al. Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries. Genome Biol. 2018. Vol. 19(1). P. 1-17. doi: 10.1186/s13059-018-1497-y

Cardoni S., Piredda R., Denk T., Grimm G.W. et al. 5S-IGS rDNA in wind-pollinated trees (Fagus L.) encapsulates 55 million years of reticulate evolution and hybrid origins of modern species. bioRxiv. 2021. doi: 10.1101/2021.02.26.433057

Chen G., Stepanenko A., Borisjuk N. Mosaic arrangement of the 5S rDNA in the aquatic plant Landoltia punctata (Lemnaceae). Front. Plant Sci. 2021. Vol. 12. P. 1-8. doi: 10.3389/fpls.2021.678689

De Souza T.B., Gaeta M.L., Martins C., Vanzela A.L.L. IGS sequences in Cestrum present AT-and GC-rich conserved domains, with strong regulatory potential for 5S rDNA. Mol. Biol. Rep. 2020. Vol. 47(1). P. 55-66. doi: 10.1007/s11033-019-05104-y

Douet J., Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity. 2007. Vol. 99. P. 5-13.doi: org/10.1038/sj.hdy.6800964

Garcia S., Garnatje T., Kovařík A. Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma. 2012. Vol. 121(4). P. 389-394. doi: 10.1007/s00412-012-0368-7

Garcia S., Wendel J.F., Borowska-Zuchowska N., Ainouche M. et al. The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants. Front.Plant Sci. 2020. Vol. 11. P. 41. doi: 10.3389/fpls.2020.00041

Gottlob-McHugh S.G., Levesque M., MacKenzie K., Olson M., et al. Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome. 1990. Vol. 33(4). P. 486-494. doi: 10.1139/g90-072

Grabiele M., Chalup L., Robledo G., Seijo G. Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Syst. Evol. 2012. Vol. 298(6). P. 1151-1165. doi: 10.1007/s00606-012-0627-3

Hanson R.E., Islam-Faridi M.N., Percival E.A., Crane C.F. et al. Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma. 1996. Vol. 105(1). P. 55-61. doi: 10.1007/BF02510039

Hemleben V., Werts D. Sequence organization and putative regulatory elements in the 5S rRNA genes of two higher plants (Vigna radiata and Matthiola incana). Gene. 1988. Vol. 62(1). P. 165-169. doi: 10.1016/0378-1119(88)90591-4

Hodel R.G., Zimmer E., Wen J.A. Phylogenomic approach resolves the backbone of Prunus (Rosaceae) and identifies signals of hybridization and allopolyploidy. Mol. Phyl. Evol. 2021. Vol. 160. P. 1-9. doi: 10.1016/j.ympev.2021.107118

Ishchenko O., Bednarska I., Panchuk I. Application of 5S ribosomal DNA for molecular taxonomy of subtribe Loliinae (Poaceae). Cytol. Genet. 2021. Vol. 55(1). P. 10-18. doi: 10.3103/S0095452721010096

Ishchenko O.O., Kozub V.V., Panchuk I.I. Organization of 5S ribosomal DNA of Litchi chinensis Sonn. Bull. Vavilov Soc. Genet. Breed. Ukraine. 2020. Vol. 18(2). P. 3-8. [In Ukranian]. doi: 10.7124/visnyk.utgis.18.1-2.1348

Ishchenko O.O., Panchuk I.I., Andreev I.O., Kunakh V.A. et al. Molecular organization of 5S ribosomal DNА of Deschampsia antarctica. Cytol. Genet. 2018a. Vol. 52(6). P. 416-421. doi: 10.3103/S0095452718060105.

Ishchenko O.O., Derevenko T.O., Panchuk I.I. 5S rDNA of Timothy-grass Phleum pratense L. Sci. Herald Chernivtsi Univ., Biol. (Biol. Syst.). 2018b. Vol. 10(2). P. 107–112. [In Ukranian]. doi: 10.31861/biosystems2019.01.040.

Mathieu O., Jasencakova Z., Vaillant I., Gendrel A.V. et al. Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell. 2003. Vol. 15(12). P. 2929-2939. doi: 10.1105/tpc.017467

Mlinarec J., Franjevic D., Bockor L., Besendorfer V. Diverse evolutionary pathways shaped 5S rDNA of species of tribe Anemoneae (Ranunculaceae) and reveal phylogenetic signal. Bot. J. Linn. Soc. 2016. Vol. 182(1). P. 80-99. doi: 10.1111/boj.12452.

Panchuk I.I., Volkov R.A. A practical course in molecular genetics. Chernivtsi: Ruta. 2007. 120 p. [In Ukranian].

Piredda R., Grimm G.W., Schulze E.D., Denk T. et al. High-throughput sequencing of 5S-IGS in oaks: Exploring intragenomic variation and algorithms to recognize target species in pure and mixed samples. Mol. Ecol. Resour. 2021. Vol. 21(2). P. 495-510. doi: 10.1111/1755-0998.13264

Porebski S., Bailey L.G., Baum B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant Mol. Biol. Rep. 1997. Vol. 15(1). P. 8-15. doi: 10.1007/BF02772108.

Roa F., Guerra M. Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 2015. Vol. 146(3). P. 243-249. doi: 10.1159/000440930

Rusak O.O., Petrashchuk V.I., Panchuk I.I., Volkov R.A. Molecular organization of 5S rDNA in two Ukrainian populations of Sycamore (Acer pseudoplatanus). Bull. Vavilov Soc. Genet. Breed. Ukr, 2016. Vol. 14(2). P. 216-220. [In Ukrainian] doi: 10.31861/biosystems2019.01.034

Shaw P.J., McKeown P.C. The structure of rDNA chromatin. The nucleolus. 2011. Springer, New York, NY. P. 43-55. doi: 10.1007/978-1-4614-0514-6_3

Shelyfist A.Y., Yakobyshen D.V., Volkov R.A. Molecular structure of 5S rDNA of Mandragora autumnalis Bertol. Bull. Vavilov Soc. Genet. Breed. Ukraine. 2019. Vol. 17(2). P. 187-195. [In Ukranian] doi: 10.7124/visnyk.utgis.17.2.1220

Shi S., Li J., Sun J., Yu J., Zhou S. Phylogeny and classification of Prunus sensu lato (Rosaceae). J. Integr. Plant Biol. 2021. Vol. 55(11). P. 1069-1079. doi: 10.1111/jipb.12095

Simeone M.C., Cardoni S., Piredda R., Imperatori F. et al. Comparative systematics and phylogeography of Quercus section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. Peer J. 2018. Vol. 6, e5793. doi: 10.7717/peerj.5793

Simon L., Rabanal F.A., Dubos T., Oliver C. et al. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucl. Acids Res. 2018. Vol. 46(6). P. 3019-3033. doi: 10.1093/nar/gky163.

Singh D., Ahuja P.S. 5S rDNA gene diversity in tea (Camellia sinensis (L.) O. Kuntze) and its use for variety identification. Genome. 2006. Vol. 49(1). P. 91-96. doi: 10.1139/g05-065

Thompson J.D., Gibson T.J., Higgins D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003. P. 2-3. doi: 10.1002/0471250953.bi0203s00

Tynkevich Y., Bushyla K., Volkov R. Organization of the 5S rDNA intergenic spacer of Quercus rubra L. and its relationship to the Ukrainian Quercus species. Factors Experimental Evol. Organisms. 2020. Vol. 26. P. 125-131. [in Ukrainian] doi: 10.7124/FEEO.v26.1254.

Tynkevich Y., Nevelska A., Chorney I., Volkov R. Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus.Bull. Vavilov Soc. Genet. Breed. Ukraine. 2015. Vol. 13(1). P. 81-87. [in Ukrainian]

Tynkevich Y.O., Volkov R.A. Novel structural class of 5S rDNA of Rosa wichurana Crep. Dopov. Nac. Akad. Nauk Ukr. 2014. № 5. P. 143-148. [in Ukrainian] doi: 10.15407/dopovidi2014.05.143

Verde I., Abbott A.G., Scalabrin S., Jung S. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 2013. Vol. 45(5). P. 487-494. doi: 10.1038/ng.2586

Volkov R.A., Kostishin S.S., Panchuk I.I. Evolution of repetitive sequences in species of subfamily Prunoideae. Ukr. Botan. J. 1994. Vol. 51(2/3). P. 110-115

Volkov R.A., Kostishin S.S., Panchuk I.I. rDNA organization in species from subfamily Prunoideae. Molecular Biology (Moscow). 1993. Vol. 27(6). P. 1356–1367

Zhang Q., Chen W., Sun L., Zhao F. et al. The genome of Prunus mume. Nat. Commun. 2012. Vol. 3(1). P.1-7. doi: 10.1038/ncomms2290

Zhao L., Potter D., Xu Y., Liu P.L. et al. Phylogeny and spatio-temporal diversification of Prunus subgenus Laurocerasus section Mesopygeum (Rosaceae) in the Malesian region. J. Syst. Evol. 2018. Vol. 56(6). P. 637-651. doi: 10.1111/jse.12467

Zhebentyayeva T., Shankar V., Scorza R., Callahan A. et al. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Hortic. Res. 2019. Vol. 6(1). P. 1-13. doi: 10.1038/s41438-018-0090-6