Організація повторюваної ділянки 5S рДНК Quercus imbricaria Michx.

  • А. С. Стратійчук Чернівецький національний університет імені Юрія Федьковича, Україна, 58012, м. Чернівці, вул. Коцюбинського, 2
  • Т. О. Деревенко Чернівецький національний університет імені Юрія Федьковича, Україна, 58012, м. Чернівці, вул. Коцюбинського, 2
  • Ю. О. Тинкевич Чернівецький національний університет імені Юрія Федьковича, Україна, 58012, м. Чернівці, вул. Коцюбинського, 2

Анотація

Мета. Ділянки 5S рДНК являють собою зручну модель для вивчення еволюції повторюваних послідовностей. Крім того, порівняння 5S рДНК було успішно використано для з’ясування філогенетичних відносин між близько спорідненими видами рослин. Проте, на сьогодні практично відсутні дані щодо організації повторів 5S рДНК у представників секції Lobatae – однієї з найбільших груп роду Quercus. Відповідно, нашою метою було дослідити організацію 5S рДНК Q. imbricaria – виду, що належить до цієї секції. Методи. Виділення ДНК, ПЛР-ампліфікація, клонування та сиквенування. Результати. Клоновано та сиквеновано повну повторювану ділянку 5S рДНК. Виявлено, що у геномі дубів кодувальна ділянка 5S рДНК містить 5 нуклеотидних замін порівняно з такою у арабідопсису. Проте, вторинна структура гіпотетичного транскрипту зберігає всі типові особливості 5S рРНК. У міжгенному спейсері (IGS) були виявлені потенційні елементи зовнішнього промотору. Висновки. Присутні у 5S рРНК нуклеотидні заміни виникли в ході еволюції як компенсаторні, що призводить до збереження її вторинної структури. Завдяки суттєвим відмінностям між видами різних секцій, IGS 5S рДНК можна застосувати для таксономічних досліджень у роді Quercus.
Ключові слова: 5S рДНК, молекулярна еволюція, Quercus, Lobatae.

Посилання

Panchuk I. I., Volkov R. A. Praktykum z molekuliarnoi henetyky. Chernivtsi: Ruta. 2007. 120 p.

Rusak I. I., Petrashchuk V. I., Panchuk I. I., Volkov R. A. Molecular organization of 5S rDNA in two Ukrainian populations of Sycamore (Acer pseudoplatanus). Visnik ukrains’kogo tovaristva genetikiv i selekcioneriv. 2016. Vol. 14, No 2. P. 216–220. doi: 10.7124/visnyk.utgis.14.2.691

Tynkevich Y. O., Volkov R. A. Novel structural class of 5S rDNA of Rosa wichurana Crep. Reports of the National Academy of Sciences of Ukraine. 2014. No 5. P. 143–148.

Tynkevich Y. O., Nevelska A. O., Chorney I. I., Volkov R. A. Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus. Visnik ukrains’kogo tovaristva genetikiv i selekcioneriv. 2015. Vol. 13, No 1. P. 81–87.

Shelyfist A. Y., Tynkevich Y. O., Volkov R. A. Molecular organization of 5S rDNA of Brunfelsia uniflora (Pohl.) D. Don. Visnik ukrains’kogo tovaristva genetikiv i selekcioneriv. 2018. Vol. 16, No 1. P. 61–68. doi: 10.7124/visnyk.utgis.16.1.903

Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 1997. Vol. 25, No 17. P. 3389–3402. doi: 10.1093/nar/25.17.3389

Barciszewska M. Z. Szymañski M., Erdmann V. A. Barciszewski J. Structure and functions of 5S rRNA. Acta Biochim. Polon. 2001. Vol. 48, №. 1. P. 191-198.

Bolsheva N. L., Melnikova N. V., Kirov I. V., Speranskaya A. S., Krinitsina A. A., Dmitriev A. A., Rozhmina T. A. Evolution of blue–flowered species of genus Linum based on high-throughput sequencing of ribosomal RNA genes. BMC Evol. Biol. 2017. Vol. 17, No 2. P. 23-36. doi: 10.1186/s12862-017-1105-x.

Cloix C., Yukawa Y., Tutois S., Sugiura M., Tourmente S. In vitro analysis of the sequences required for transcription of the Arabidopsis thaliana 5S rRNA genes. Plant J. 2003. Vol. 35. P. 251–226. doi: 10.1046/j.1365-313X.2003.01793.x

Cloix C., Tutois S. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genom Res. 2000. Vol. 10. P. 679–690. doi: 10.1101/gr.10.5.679

de Souza T. B. Gaeta M. L., Martins C., Vanzela A. L. L. IGS sequences in Cestrum present ATand GC-rich conserved domains, with strong regulatory potential for 5S rDNA. Mol. Biol. Reports. 2019. P. 1–12. doi: 10.1007/s11033-019-05104-y

Denk T., Grimm G. W., Manos P. S., Deng M., Hipp A. L. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns, Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L., Cham: Springer. 2017, P. 13–38. doi: 10.1007/978-3-319-69099-5_2

Denk T., Grimm G. W. The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon. 2010. Vol. 59, No 2, P. 351–366. doi: 10.1002/tax.592002.

Douet J., Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity. 2007. Vol. 99. P. 5–13. doi: org/10.1038/sj.hdy.6800964

Fulnecek J., Lim K. Y., Leitch A. R., Kovarík A., Matyásek R. Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity. 2002. Vol. 88. P. 19–25. doi: 10.1038/sj.hdy.6800001

Hipp A. L., Manos P. S., Hahn M., Avishai M., Bodénès C., Cavender-Bares J., Crowl A., Deng M., Denk T., Fitz-Gibbon S., Gailing O., González-Elizondo M.S., González-Rodríguez A., Grimm G. W., Jiang X.-L., Kremer A., Lesur I., McVay J. D., Plomion C., Rodríguez-Correa H., Schulze E.-D., Simeone M. C., Sork V. L., Valencia-Avalos S. Genomic landscape of the global oak phylogeny. bioRxiv. 2019. P. 587253. doi: 10.1101/587253

Ibiapino A., García M. A., Ferraz M. E., Costea M., Stefanovic S., Guerra M. Allopolyploid origin and genome differentiation of the parasitic species Cuscuta veatchii (Convolvulaceae) revealed by genomic in situ hybridization. Genome. 2019. Vol. 62, No 7. P. 467–475. doi: 10.1139/gen-2018-0184

Ishchenko O. O., Panchuk I. I., Andreev I. O., Kunakh V. A., Volkov R. A. Molecular organization of 5S ribosomal DNA of Deschapmpsia antarctica. Cytol. Genet. 2018. Vol. 52. No 6. P. 416–421. doi: 10.3103/S0095452719010146.

Layat E., Saez-Vasquez J., Tourmente S. Regulation of Pol I-transcribed 45S rDNA and Pol IIItranscribed 5S rDNA in Arabidopsis. Plant Cell Physiol. 2012. Vol. 53, No 2. P. 267–276. doi:10.1093/pcp/pcr177.

Mlinarec J., Franjevic D., Bockor L., Besendorfer V. Diverse evolutionary pathways shaped 5S rDNA of species of tribe Anemoneae (Ranunculaceae) and reveal phylogenetic signal. Bot. J. Linn. Soc. 2016. Vol. 182, No 1. P. 80–99. doi: 10.1111/boj.12452.

Navrotska D., Andreev I., Betekhtin A. Rojek M., Parnikoza I., Myryuta G., Ivannikov R., Hasterok R., Kunakh V. Assessment of the molecular cytogenetic, morphometric and biochemical parameters of Deschampsia antarctica from its southern range limit in maritime Antarctic. Polish Polar Res. 2018. Vol. 39, No 4. P. 525–548. doi: 10.24425/118759.

Pastova L., Belyayev A. Mahelka V. Molecular cytogenetic characterisation of Elytrigia × mucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae). BMC Plant Biol. 2019. Vol. 19, No 230. doi: 10.1186/s12870-019-1806-y

Porebski S., Bailey L. G., Baum B. R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant Mol. Biol. Rep. 1997. Vol. 15. No 1. P. 8–15. doi: 10.1007/BF02772108.

Saini A., Jawali N. Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications. Plant Syst. Evol. 2009. Vol. 280. P. 187–206. doi: 10.1007/s00606-009-0178

Sambrook J., Fritsch E., Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory, 1989. 1626 p.

Simeone M. C., Cardoni S., Piredda R., Imperatori F., Avishai M., Grimm G. W., Denk T. Comparative systematics and phylogeography of Quercus section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. Peer. J. 2018. Vol. 6. P. e5793. doi: 10.7717/peerj.5793

Simon L., Rabanal F. A., Dubos T., Oliver C., Lauber D., Poulet A., Vogt A., Mandlbauer A., Le Goff S., Sommer A., Duborjal H., Tatout C., Probst A. V. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucl. Acids Res. 2018. Vol. 46. No 6. P. 3019–3033. doi: 10.1093/nar/gky163.

Turner D. H., Mathews D. H. NNDB: The nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. 2009. Nucl. Acids Res. Vol. 38. P. D280–D282. doi: 10.1093/nar/gkp892

Tynkevich Y. O., Volkov R. A. 5S ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application. Cytol. Genet. 2019. Vol. 53. No 6. P. 459–466. doi: 10.3103/S0095452719060100

Tynkevich Y. O., Volkov R. A. Structural organization of 5S ribosomal DNA in Rosa rugosa. Cytol. Genet. 2014. Vol. 48. No 1. P. 3–9. doi: 10.3103/S0095452714010095.

Venkateswarlu K., Lee S. W., Nazar R. N. Conserved upstream sequence elements in plant 5S ribosomal RNA-encoding genes. Gene. 1991. Vol. 105. P. 249–253. doi: 10.1016/0378-1119(91)90158-8

Volkov A. R., Panchuk I. I. 5S rDNA of Dactylis glomerata (Poaceae): molecular organization and taxonomic application. Visnik ukrains’kogo tovaristva genetikiv I selekcioneriv. 2014. Vol. 12, No 1. P. 3–11.

Volkov R. A., Panchuk I. I., Borisjuk L. G., Borisjuk M. V. Plant rDNA: Organization, evolution, and using. Cytol. Genet. 2003. Vol. 37, No 1. P. 68–72.

Volkov R. A., Panchuk I. I., Borisjuk N. V., Hosiawa-Baranska M., Maluszynska J., Hemleben V. Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant Biol. 2017. Vol. 17, No 1. P. 1–15. doi: 10.1186/s12870-017-0978-6.

Volkov R. A., Zanke C., Panchuk I. I., Hemleben V. Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theor. Appl. Genet. 2001. Vol. 103, No 8. P. 1273–1282. doi: 10.1007/s001220100670.

Wicke S., Costa A., Munoz J., Quandt D. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phyl. Evol. 2011. Vol. 61. P. 321–332.

Wright J. P., Jones C. G. The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. BioScience. 2006. Vol. 56, No 3. P. 203–209. doi:10.1641/0006-3568(2006)056(0203:tcooae)2.0.co;2