Estimation of genetic diversity for different species of woody plants by intron length polymorphism of beta-tubulin genes
Abstract
Aim. The effectiveness of using the method of intron length polymorphism of β-tubulin genes is analyzed to evaluate the genetic diversity and polymorphism of tree plants by approbating it for a broad sample of tree plants of different taxonomic positions. Method. The method of estimation intron length polymorphism of β- tubulin (tubulin base polymorphism — TBP-method) has been tested. Results. The molecular genetic profiles and the unique patterns for the Quercus robur L., Populus tremula L., Fagus sylvatica L., Fagus sylvatica f. salicifolia, Robinia pseudoacacia L., Morus alba L., Ulmus glabra Huds., Betula pendula Roth., Acer platanoides L., Acer negundo L., Acer saccharinum Marshall, Catalpa bignonioides Walter, Tilia cordata Mill., Tilia platyphyllos Scop., Aesculus hippocastanum L., Populus nigra L., Juglans regia L., Fraxinus excelsior L., Alnus glutinosa (L.) Gaertn., Ginkgo biloba L. have been created. Some common fragments inherent in individual genera within the family have been found. Conclusions. TBP-method is rather convenient and reliable. It can be used both for molecular genetic marking and for the study of intra- and interspecific polymorphism of economically valuable, horticultural and forest trees.
Keywords: TBP-method, β-tubulin introns, tree plants, genetic diversity.References
Braglia L., Manca A., Mastromauro F., Breviario D. cTBP: a successful intron length polymorphism (ILP)-based genotyping method targeted to well deined experimental needs. Diversity. 2010. Vol. 2. P. 572–585. doi: 10.3390/d2040572
Bardini M., Lee D., Donini P. et al. Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome. 2004. Vol. 47. P. 281–291. doi: 10.1139/g03-132
Sulimova G. E. DNA-markers in genetic studies: types of markers, their properties and field of application. Usp. Sovr. Biol. 2004. Vol. 124(3). P. 260–271 (in Russian).
Khlestkina E. K. Molecular markers in genetic studies and breeding. Vavilov Journal of Genetics and Breeding. 2013. Vol. 17(4/2). P. 1044–1054 (in Russian). http://vavilov.elpub.ru/jour/article/view/220/221
Rabokon A. N., Demkovich A. E., Pirko Ya. V., Blume Ya. B. Studing of b-tubulin gene intron length polymorphism of Triticum aestivum L. and Hordeum vulgare L. varieties. Faktors Exp. Evol. Org. 2015. Vol. 17. P. 82–86 (in Ukrainian).
Le Hir H., Nott A., Moore M. J. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 2003. Vol. 28(4). P. 215–220. doi: 10.1016/S0968-0004(03)00052-5
Li S.-C., Tang P., Lin W.-C. Intronic MicroRNA: discovery and biological implications. DNA and Cell Biol. 2007. Vol. 26(4). P. 195–207. doi: 10.1089/dna.2006.0558
Morello L., Breviario D. Plant spliceosomal introns: not only cut and paste. Curr. Genomics. 2008. Vol. 9(4). P. 227–238. doi: 10.2174/138920208784533629
Aldrich P. R., Jagtap M., Michler C. H., Romero-Severson J. Amplification of north american red oak microsatellite markers in european white oaks and chinese chestnut. Silvae Genetica. 2003. Vol. 52(3-4). P. 176–179.
Breviario D., Baird W. V., Sangoi S. et al. High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Mol. Breed. 2007. Vol. 20(3). P. 249–259. doi: 10.1007/s11032-007-9087-9
Gerber S., Chadœuf J., Gugerli F. et al. High rates of gene flow by pollen and seed in oak populations across Europe. PLoS ONE. 2014. Vol. 9(1). P. e85130. doi: 10.1371/journal.pone.0085130
Sakurai A., Fujimori S., Kochiwa H. et al. On biased distribution of introns in various eukaryotes. Gene. 2002. Vol. 300(1-2). P. 89–95.
Pirko N. N., Demkovych A. Ye., Kalafat L. O. et al. Intron length polymorphism of β-tubulin genes in different representatives of Pinaceae Lindl. family. J. Bot. 2016. Vol. VIII, No. 2(13). P. 5–9.
Frouz J., Vobořilová V., Janoušová I. et al. Spontaneous establishment of late successional tree species English oak (Quercus robur) and European beech (Fagus sylvatica) at reclaimed alder plantation and unreclaimed post mining sites. Ecol. Engineering. 2015. Vol. 77. P. 1–8.
Petit R. J., Csaikl U. M., Bordács S. et al. Chloroplast DNA variation in European white oaks. Forest Ecol. Management. 2002. Vol. 156(1–3). P. 5–26.
Neophytou C., Aravanopoulos F., Fink S., Dounavi A. Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. Forest Ecol. Management. 2010. Vol. 259(10). P. 2026–2035. doi: 10.1016/j.foreco.2010.02.013
Green M. R., Sambrook J. Molecular cloning. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 2012. 1890 p
Benbouza H., Jacquemin J.-M., Baudoin J.-P., Mergeai G. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol. Agron. Soc. Environ. 2006. Vol. 10(2). P. 77–81.
Rahman M. H., Jaquish B., Khasa P. D. Optimization of PCR protocol in microsatellite analysis with silver and SYBR stains. Plant Mol. Biol. Rept. 2000. Vol. 18(4). P. 339–348. doi: 10.1007/BF02825061
Hongtrakul V., Huestis G. M., Knapp J. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor. Appl. Genetics. 1997. Vol. 95(3). P. 400–407. doi: 10.1007/s001220050576
Kremer A., Abbott A. G., Carlson J. E. et al. Genomics of Fagaceae. Tree Genetics Genomes. 2012. Vol. 8(3). P. 583–610. doi: 10.1007/s11295-012-0498-3
Hongtrakul V., Huestis G. M., Knapp S. J. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor. Appl.Genetics. 1997. Vol. 95(3). P. 400–407
Vyhnánek T., Bačovský V., Vlašínová H. et al. The study of genetic variability in the genus Aesculus L. by SSR markers. Zprávy Lesnického Výzkumu. 2013. Vol. 58(3). P. 244–249
Bajpai P. K., Warghat A. R., Sharma R. K. et al. Structure and genetic diversity of natural populations of Morus alba in the Trans-Himalayan Ladakh region. Biochem. Genetics. 2014. Vol. 52(3). P. 137–152. doi: 10.1007/s10528-013-9634-5
del Puerto M. M., García M. F., Mohanty A., Martín J. Genetic diversity in relict and fragmented populations of Ulmus glabra Hudson in the central system of the Iberian peninsula. Forests. 2017. Vol. 8(5). P. 143. doi: 10.3390/f8050143
Tollefsrud M. M., Myking T., Sønstebø J. H. et al. Genetic Structure in the Northern Range Margins of Common Ash, Fraxinus excelsior L. PLoS ONE. 2016. Vol. 11(12). doi: 10.1371/journal.pone.0167104
Guo Q., Wang J.-X., Su L.-Z. et al. Development and evaluation of a novel set of EST-SSR markers based on transcriptome sequences of black locust (Robinia pseudoacacia L.). Genes. 2017. Vol. 8(7). P. 177. doi: 10.3390/genes8070177
Wang P., Ma Y., Ma L. et al. Development and Characterization of EST-SSR Markers for Catalpa bungei (Bignoniaceae). Appl. Plant Sci. 2016. Vol. 4(4). P. 1500117. doi: 10.3732/apps.1500117
Nei M, Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases Proc. Natl. Acad. Sci. USA. 1979. Vol. 76(10). P. 5269–5273.
Guo W., Hou J., Yin T., Chen Y. An analytical toolkit for polyploid willow discrimination. Sci. Repts. 2016. Vol. 6. P. 37702. doi: 10.1038/srep37702