Role of salicylate and jasmonate signaling in lipopolysaccharide-induced resistance of Arabidopsis thaliana to the phytopathogenic strain of Pseudomonas aeruginosa IMB 9096
Abstract
Aim. The aim of the investigation was to study the effect of lipopolysaccharides (LPS) derived from saprophytic strains of Pseudomonas aeruginosa on the resistance to phytopathogenic strain of P. aeruginosa IMB 9096. The wild-type (Col-0) Arabidopsis thaliana plants, npr1 mutant, which lacks expression of PR-genes, NahG genotype plants, expressing the bacterial gene of NahG salicylate hydrolase, jin1 mutant, insensitive to jasmonic acid, have been used as a model systems in resistance testing. Methods. Common phytopathological methods were used. Results. Lipopolysaccharide from the saprophyte P. aeruginosa IMV 8614 strain increased the resistance of seedlings of all genotypes to infection with phytopathogenic strain P. aeruginosa IMB 9096. The most effective protection had been observed in the mutant jin1. The protective effect was also observed in jin1 after the treatment with LPS derived from the saprophyte strain P. aeruginosa IMV 8615. LPS 8615 increased the sensitivity to infection in the NahG and npr1 transgenic plants, especially in NahG. LPS from the saprophyte P. aeruginosa IMV 8616 increased resistance to P. aeruginosa IMB 9096 infection in all four A. thaliana genotypes. Conclusions. The effect of LPS derived from different strains of saprophytic bacteria can both increase and decrease the sensitivity of plants to infection with bacterial phytopathogens. The effect of LPS depends upon the bacteria strain and the functional state of the salicylate and jasmonate signaling systems in the infected plants.
Keywords: Arabidopsis thaliana, Pseudomonas aeruginosa, lipopolysaccharide, induced resistanse
References
Dmytriyev O.P., Kovbasenko R.V., Lapa S.V., Kovbasenko V.M. Syhnalni systemy roslyn ta formuvannia stiikosti roslyn proty biotychnoho stresu. Kyiv: Feniks, 2015. 192 p. (in Ukr.)
Rashid M.H., Khan A., Hossain M.T., Chung Y.R. Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing phytoalexin deficient 4 in Arabidopsis Front. Plant Sci. 2017. Vol. 8. P. 211. doi: 10.3389/fpls.2017.00211
Nie P., Li X, Wang S, Guo J, Zhao H., Niu D. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis Front. Plant Sci. 2017. Vol. 8. P. 238. doi: 10.3389/fpls.2017.00238
Zhang H., Huang L., Dai Y., Liu S., Hong Y, Tian L., Huang L., Cao Z., Li D., Song F. Arabidopsis AtRF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC 3000 and Botrytis cinerea. Front. Plant Sci. 2015. Vol. 6. P. 686. doi: 10.3389/fpls.2015.00686
Niu D.-D., Liu H.-X., Jiang C.-H., Wang Y.-P., Wang Q.-Y., Jin H.-L., Guo J.-H. The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways MPMI. 2011. Vol. 24(5). P. 533–542. doi: 10.1094/MPMI-09-10-0213
Pieterse C.M.J., van Wees S.C.M., Hoffland E., van Pelt J.A., van Loon L.C. Systemic resistance in Arabidopsis induced by biocontrol bacteria is lndependent of salicylic acid accumulation and pathogenesis-related gene expression The Plant Cell. 1996. Vol. 8. P. 1225-1237. doi: 10.1105/tpc.8.8.1225
Hryneva Y.A., Maslak D.V., Sadovskaia L.E., Skakun T.L., Feklystova Y.N. Formyrovanie systemnoy ustoichivosti k abyotycheskym faktoram sredy u rasteniy kapusty belokochannoy pod vozdeystviem elisitorov rizosfernykh bakteriy roda Pseudomonas. XIth international scientific-applied conference daRostim 2015 Theory, practice and perspectives of the application of biologically active compounds in agriculture (17th–19th June 2015, Syktyvkar, Russia). 224 p. (in Russian).
Yutynskaya H.A., Beliavskaia L.A., Kozyritskaia V.E. Mikrobnie preparaty fitozashchitnogo, rostregulyruiushchego i adaptogennogo deystviya dlia rastenievodstva. XIth international scientific-applied conference daRostim 2015 Theory, practice and perspectives of the application of biologically active compounds in agriculture (17th–19th June 2015, Syktyvkar, Russia). 224 p. (in Russian).
Baubekova D.H. Razrabotka polifunktsionalnogo biopreparata na osnove mikroorganizma roda Bacillus dlia zashchity sel′skokhoziaystvennoy produktsii. Estestvennye i matematicheskiye nauki v sovremennom mire. XVIII mezhdunarodnaya-nauchno-prakticheskaya-konferentsya: Sbornyk statey. 2014. No 5 (17). P. 91-97. (in Russian).
Silipo A., Erbs G., Shinya T., Dow J.M., Parrilli M., Lanzetta R., Shibuya N., Newman M.-A., Molinaro A. Glycoconjugates as elicitors or suppressors of plant innate immunity. Glycobiology. 2010. Vol. 20(4). P. 406-419. DOI: 10.1093/glycob/cwp201
Newman M.-A., Dow J.M., Molinaro A., Parrilli M. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J. Endotoxin Res. 2007. Vol. 13. P. 68–79. doi: 10.1177/0968051907079399
Zeidler D., Zähringer U., Gerber I., Dubery I., Hartung T., Bors W., Hutzler P., Durner J. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defence genes. Proc. Natl Acad. Sci. USA. 2004. Vol. 101. P. 15811–15816. doi: 10.1073/pnas.0404536101
Coventry H.S., Dubery I.A. Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol. Mol. Plant Pathol. 2001. Vol. 58. P. 149–158. doi 10.1006/pmpp.2001.0323
Dow M., Newman M.-A., von Roepenack E. The induction and modulating of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 2000. Vol. 38. P. 241–261. doi: 10.1146/annurev.phyto.38.1.241
Shilina J., Gusha M., Molozhava O., Dmitriev A. Evaluation of LPS effect on Arabidopsis thaliana plants resistance to phytopathogenic bacteria. Bulletin of Ukrainian Society of Geneticists and Breeders. 2015. Vol. 13(1). P. 100-104. (in Ukrainian)
Varbanets L.D., Zdorovenko G.M., Knirel Yu.A. Metody issledovaniya endotoksinov (Methods for the Study of Endotoxins), Kiev Naukova Dumka, 2006. 237 p. (in Russian).
Jia X., Meng Q., Zeng H., Wang W., Yin H.. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Scientific Reports. 2016. Vol. 6. 26144. doi: 10.1038/srep26144.
Caarls L., Van der Does D., Hickman R., Van Verk W.J.M. C., Proietti S., Lorenzo O., Solano R., Pieterse C.M.J., Van Wees S.C.M. Assessing the role of ethylene response factor transcriptional repressors in salicylic acid-mediated suppression of jasmonic acid-responsive genes. Plant and Cell Physiology, 2017. Vol. 58(2). P.266-278. doi: 10.1093/pcp/pcw187
Caarls L., Pieterse C.M.J., Van Wees S.C.M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 2015. Vol. 6. P. 170. doi: 10.3389/fpls.2015.00170
Naseem M., Kunz M., Dandekar T. Probing the Unknowns in cytokinin-mediated immune defense in Arabidopsis with systems Biology approaches. Bioinformatics and Biology Insights. 2014. Vol. 8. P. 35–44. doi: 10.4137/BBi.s13462
Thaler J.S., Humphrey P.T., Whiteman N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science. 2012. Vol. 17(5). P. 260-270. doi: 10.1016/j.tplants.2012.02.010
Koornneef A., Pieterse C.M.J. Cross talk in defense signaling. Plant Physiology. 2008. Vol. 146. P. 839–840. doi: 10.1104/pp.107.112029
Loake G., Grant M. Salicylic acid in plant defence - the players and protagonists. Current Opinion in Plant Biology. 2007. 10. P. 466–472. DOI: 10.1016/j.pbi.2007.08.008
Spoel S.H., Koornneef A., Claessens S.M. C., Korzelius J.P., Van Pelt J.A., Mueller M.J., Buchala A.J., Métraux J.-P., Brown R., Kazan K., Van Loon L.C., Dong X., Pieterse C.M. J.. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell. 2003. Vol. 15. P. 760–770. DOI: 10.1105/tpc.009159
Doares S., Syrovets T., Weiler E., Ryan C. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 4095-4098. doi: 10.1073/pnas.92.10.4095
Mishina T.E., Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 2007. Vol. 50(3). P. 500-513. doi: 10.1111/j.1365-313X.2007.03067.x
Shilina J.V., Guscha M.I., Dmitriev A.P., Kutlakhmedov Y.A., Molozhava O.S., Dombrovska I.V. The problem of microorganism pathogenicity modification at anthropogenic-changed ecosystems. Agroecological Journal. 2006. N 2. P. 62-66. (in Ukr.)