The allelic state of SNP-markers, specific for lancaster germpasm maize inbreds
Abstract
Aim. To identify the alleles of SNP-markers specific for Lancaster germplasm maize inbreds, in comparison with inbreds of other germplasms. Methods. Analysis of single nucleotide polymorphism of DNA on 384 SNP-markers of BDI-IIIa panel with GoldenGate-test and reading system Illumina VeraCode. Results. The greatest difference between the frequencies of the same alleles in two groups of lines, on the level of D = 0.74, was fixed for SNPmarker BDI-IIIa-332. For markers which were selected according to ranking at D = 0.53–0.74 the range of frequencies of major alleles in the group of nonLancaster lines was 0.57–0.84. In the group of Lancaster lines frequencies of the same alleles decreased to 0.03–0.10. Missing alleles in the group of Lancaster lines and unique ones in nonLancaster lines for 16 SNP markers were identified. Conclusions. Allele composition of SNPmarkers of BDI-IIIa panel specific for Lancaster germplasm was defined as BDI-IIIa-332G, BDI-IIIa-151A, BDIIIIa-331Т, BDI-IIIa-335C, BDI-IIIa-185C, BDI-IIIa-181C, BDI-IIIa-83C, BDI-IIIa-359G, BDI-IIIa-269G and BDI-IIIa- 96A. Dendrogram of phylogenetic relationships between maize lines of modern gene pool from breeding programs used in the Steppe zone of Ukraine based on the results of SNP-analysis indicates the closeness of the information on pedigree and SNP-analysis, but identifies genetic heterogeneity within Lancaster germplasm.
Keywords: molecular markers, maize, Lancaster germplasm, line, single nucleotide polymorphism of DNA.
References
Satarova T. M., Dziubetskyi B. V., Cherchel V. Yu., Borysova V. V., Tagantsova M. M. SNP-analysis in certification and identification of maize lines. Plant Varieties Studying and Protection. 2014. No 3. P. 4–9. doi: 10.21498/2518-1017.3(24).2014.55993
Richard C., Osiru D.S., Mwala M.S., Lubberstedt T. Genetic diversity and heterotic grouping of the core set of southern African and temperate maize (Zea mays L.) inbred lines using SNP markers. Maydica. 2016. Vol. 61(1):M3.
Simic D., Ledencan T., Jambrovic A. et al. SNP and SSR marker analysis and mapping of a maize population. Genetika. 2009. Vol. 41(3). P. 237–246.
Zhang X., Zhang H., Li L et al. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genomewide SNP markers. BMC Genomics. 2016. Vol. 17:697. doi: 10.1186/s12864-016-3041-3
Wu Y., Vicente F.S., Huang K. et al. Molecular characterization of CIMMYT maize inbred lines with genotyping by sequencing SNPs. Theor. Appl. Genet. 2016. Vol. 129(4). P. 753–765. doi: 10.1007/s00122-016-2664-8
Borysova V.V. Selektsiyni aspekty zastosuvannia SNP-analizu u kukurudzy : dys. kand. biol. nauk: 06.01.05. DU Instytut silskoho hospodarstva stepovoi zony NAAN Ukrainy, Dnipropetrovsk, 2015. 230 p.
Farfan I.D.B., De La Fuente G.N., Murray S.C. et al. Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the Sub-Tropics. PLoS ONE. 2015. Vol. 10(2). P. 1–30. doi: 10.1371/journal.pone.0117737
Thirunavukkarasu N., Hossain F., Arora K. et al. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genomics. 2014. Vol. 15 (1182).– P. 1–12. doi: 10.1186/1471-2164-15-1182
Sokolov V.M., Varenik B.F., Piliugin A.S., Guzhva D.V. Selektsionnaia otsenka elitnykh samoopylennykh liniy kukuruzy iz osnovnykh geterozisnykh grupp zarodyshevoy plazmy. Genetika, selektsiia i tekhnologiia vozdelyvaniia kukuruzy. Krasnodar: Maykop RIPO «Adygeia». 1999. P. 92–96.
Troyer A. F. Temperate corn background, behavior, and breeding. CRC Press, 2000. 468 p.
Mhoswa L., Derera J., Qwabe F.N.P., Musimwa T.R. Diversity and path coefficient analysis of Southern African maize hybrids. Chilean J. Agric. Res. 2016. Vol. 76 (2). P. 143–151. doi: 10.4067/S0718-58392016000200002
Nyombayire A., Derera J., Sibiya J. et al. Genetic diversity among maize inbred lines selected for the midaltitudes and highlands of Rwanda. Maydica. 2016. Vol. 61(2): M17.
Derkach K.V., Abraimova O.E., Satarova T.M. Regulation of in vitro morphogenesis in maize inbreds of the Lancaster group. Visn. Dnipropetr. Unìv. Ser. Biol. Ekol. 2016. Vol. 24(2). P. 253–257. doi: 10.15421/011631
Dziubetskyy B.V., Fedko M.M., Bodenko N.A.Otrymannia ta otsinka novykh inbrednykh liniy kukurudzy (Zea mays L.), sporidnenykh z henoplazmoiu Lancaster. Visnyk ahrarnoi nauky. 2015. No 1. P. 46–50.
Fan J.B., Gundersson K.L., Bibikova M. et al. Illumina universal bead arrays. Methods Enzymol. 2006. Vol. 410. P. 57–73. doi: 10.1016/S0076-6879(06)10003-8
illumina®. Access mode : http://www.illumina.com.
illuminaGolGate® Genotyping Assay for VeraCode® Manual Protocol Access mode: http://supportres.illumina.com/documents/myillumina/5cdc02d3-024d-43b5-b1aa8e22390fa5a/goldengate_gt_for_veracode_man_euc_11312755_reva.pdf
Venkatramana P.,Carlson C., Blackstad M. et al. Development and characterization of single nucleotide polymorphism (SNP) panel for markers-assisted backcrossing in corn. Abstracts from AOSA/SCST Meeting. 2012. Vol. 32(2). P. 153.
QIAMP DNA Mini and Blood Mini Handbook EN. Access mode: www.qiagen.com/resources
Weng J., Li B., Liu Ch. et al. A non-synonymous SNP within the isopentenyl trasferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.). BMC Plant Biol. 2013. Vol. 13. P. 1–11. doi: 10.1186/1471-2229-13-98
Lakin G. F. Biometriia. Moskva: Vysshaia shkola, 1990. 352 p.
Welham S.J., Gezan S.A., Clark S.J., Mead A. Statistical methods in biology: design and analysis of experiments and regression. Boca Raton: CRC Press, 2014. 608 p.
Lu Y., Yan J., Guimaraes C.T. et al. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 2009. Vol. 120. P. 93–115. doi: 10.1007/s00122-009-1162-7
Sivolap Yu. M., Kozhukhova N. E., Kalendar R. N. Variabelnost i spetsifichnost genomov selskokhoziaystvennykh rasteniy. Odessa: Astroprint, 2011. 336 p.