Content of phenolic compounds in Acorus calamus L. tissue culture and nutrient culture medium under in vitro conditions
Abstract
Aim. To find out the biochemical peculiarities of Acorus calamus L of the two genotypes, acquired from different populations, an analysis of phenolic compounds in explant tissues and in nutrient medium in vitro was conducted. Methods. Plants, acquired by microclonal multiplication were studied. To detect general phenol content, Folin–Ciocalteu reagent was used, for flavonoid content - zirconium chloride crystallohydrate nitrate (IV). Xanthone content was identified by Vysochina G.I. and Kukushkina T.A. methods with our own modifications. The extracts were studied using spectrophotometric measurements. Results. Tissues of A. calamus and the nutrient medium contained different amount of phenolic compounds, depending on parent plant origin and in vitro cultivation duration. Conclusions. Since the explants were cultivated in identical conditions, the difference of phenolic compound content both in tissues and nutrient medium indicates genetic variability of A. calamus plants on population level.
Key words. Acorus calamus, culture in vitro, phenols, flavonoids, xanthones.
References
Ghasemzadeh A., Ghasemzadeh N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. of Medicinal Plants Research. 2011. Vol. 5(31). P. 6697-6703. doi: 10.5897/JMPR11.1404
Wink M. Annual Plant Reviewes, Biochemistry of Plant Secondary Metabolism (Second Edition). Wiley-Blackwell, 2010. Vol. 40. 464 p. doi: 10.1002/9781444320503
Gao J., Wang S. J., Fang F., Si Y.K., Yang Y.C., Liu G.T., Jian-gong S. Xanthones from Tibetan medicine Halenia elliptica and their antioxidant activity. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2004. Vol. 26(4). P. 364-367.
Ramakrishna A., Ravishankar G. A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior. 2011. Vol. 6(11). P. 1720-1731. doi: 10.4161/psb.6.11.17613
Sarawut J. Xanthones from Mangosteen (Garcinia mangostana): Multi-targeting Pharmacological Properties J. Med. Assoc. Thai. 2014. Vol. 97(2). P. 196-201.
Bhattacharya A., Sood P., Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection – Review. Mol Plant Pathol. 2010. Vol. 11(5). P. 705-719. doi: 10.1111/J.1364-3703.2010.00625.X
Mengwasser J. H. Lead compounds from nature: Synthesis of natural xanthones and chroman aldehydes that inhibit HIV-1. Graduate Theses and Dissertations. 2011. 106 p.
Fiesel T., Gaid M., Müller A. et al. Molecular cloning and characterization of a xanthone prenyltransferase from Hypericum calycinum cell cultures. Molecules. 2015. Vol. 20. P. 15616-15630. doi: 10.3390/molecules200915616
Franklin G., Conceicao L. F. R., Kombrink E., Dias A. C. P. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry. 2009. Vol. 70. P. 60-68. doi: 10.1016/j.phytochem.2008.10.016
Devi S. A., Bawankar R., Babu S. Current status on biological activities of Acorus calamus - A Review. Int. J. Pharm. Pharm. Sci. 2014. Vol. 6(10). P. 66-71.
Vijayapandi P., Anabathina A. K., Srikanth S. N. In vitro anticholinergic and antihistaminic activities of Acorus calamus Linn. leaves extracts J. Tradit. Complement. Altern. Med. 2013. Vol. 10(1). P. 95-101.
Golubenko A., Tsap V. Clonal micropropagation of Acorus calamus L. plants in vitro. Visnyk KNU imeni Tarasa Shevchenka. Introduktsiia ta zberezhennia roslynnoho riznomanittia. 2016. Vol. 1(34). P. 54-56.
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962. Vol. 15. P. 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
Bobo-Garcia G., Davidov-Pardo G., Arroqui C. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015. Vol. 95(1). P. 204–209. doi: 10.1002/jsfa.6706
Li X., Kim J. K., Park S. Y. Comparative analysis of flavonoids and polar metabolite profiling of Tanno-original and Tanno-high rutin buckwheat. J. Agric. Food Chem. 2014.Vol. 62(12). P. 2701-2708. doi: 10.1021/jf4049534
Smirnov O. E., Kosyan A. M., Kosyk O. I., Taran N. Yu. Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum Moench. plants. Ukr. Biochem. J. 2015. Vol. 87(6). P. 129-135. doi: http://dx.doi.org/10.15407/ubj87.06.129
Petry R. D., Ortega G. G., Silva W. B. Flavonoid content assay: influence of the reagent concentration and reaction time on the spectrophotometric behavior of the aluminium chloride-flavonoid complex. Pharmazie. 2011. Vol. 56, No 6. P. 465-470.
Visochyna H. Y., Kukushkyna T. A. Biologically active substances of some species of the genus Hedysarum L. Chemistry of plant raw material. 2011. No 4. P. 251-258.
Kukushkyna T. A., Zynner N. S., Visochyna H. Y., Svyrydova T. P. The content of xanthones in the aerial part of plants Hedysarum theinum Krasnob. and H. alpinum (L.) (Fabaceae) grown in the Siberian Botanical Garden (Tomsk) Chemistry of plant raw material. 2011. No 3. P. 113-116.
Dospekhov B. A. Methodology of field experience. Moskva: Ahropromyzdat, 1985, 350 p
Revutska A. Z., Belava V. N., Golubenko A. V., Taran N. Yu. Ecobiotechnological approaches for obtaining in vitro xanthones - pharmacologically valuable compounds. "Ecology and ecological safety»: materials of the scientific and practical conference of the all-Ukrainian student contest (Poltava, March 16–18, 2016). Poltava: PoltNTU. 2016. P. 77.
Twardovska M. O., Drobyk N. M., Mel’nyk V. M., Konvalyuk I. I., Kunakh V. A. Genome variability of some Gentiana L. species in nature and in culture in vitro: RAPD-analysis. Biopolym. Cell. 2010. Vol. 26(6). P. 499-507. doi: 10.7124/bc.00017a
Kunakh V. A. Biotechnology of medicinal plants. Genetic and physiological and biochemical foundations: monograph. Kyiv: Lohos. 2005. 730 p.