Enhanced tolerance of Deschampsia antarctica Desv. to the mutagenic effect of cadmium ions
Abstract
Aim. To study the potential effects of different concentrations of cadmium ions on antarctic plant D. antarctica using PCR analysis. Methods. Plants were grown in vitro on B5 Gamborg and Eveleigh agar medium supplemented with CdCl2. Genetic rearrangements were studied by PCR-analysis using ISSR- and IRAP-primers. Results. Genetically identical plants of D. antarctica obtained by microclonal propagation in vitro were used for the study of mutagenic effect of cadmium ions. The influence of Cd2+ was investigated within the concentration ranging from 0.1 to 10 mM. The results of cultivation of D. antarctica plants in the presence of cadmium ions for 63 days allow to determine the concentration range that does not inhibit the growth of the plants in vitro, and it was up to 1 mM. It was found that toxicant concentrations of 0.1 and 0.2 mM did not cause changes in the profiles of PCR products. After growing the plants with 0.2–1 mM CdCl2 for 17 days, the changes in the profiles of PCR products, indicating the mutagenic impact, were observed at concentrations of 0.6 mM or above; moreover, the number of changes increased in dependence on the concentration of heavy metal. Prolonged influence (140-265 days) of cadmium ions in relatively low concentrations (0.1 mM and 0.4 mM) did not cause detectable mutations. Conclusions. D. antarctica, a plant extremophile, which has evolved mechanisms of resistance to a variety of extreme conditions as a result of adaptation to the existence in the harsh conditions of Antarctica, shows enhanced resistance to cadmium ions in comparison with other species of vascular plants. Inhibition of growth occurs at Cd2+ concentrations of 0.1 mM or above, whereas concentrations of 1 mM or above cause cessation of growth and death of plants. Mutagenic effect on D. antarctica was observed at Cd2+ concentrations of above 0.4 mM. After prolonged growth of plants (for 3–8 months) at cadmium ions concentrations of 0.1–0.4 mM, genetic changes was not found.
Keywords: Deschampsia antarctica Desv., plants in vitro obtained by microclonal propagation, cadmium ions, mutagenic effect, PCR-analysis.
References
Parnikoza I., Kozeretska I., Kunakh V. Vascular plants of the Maritime Antarctic: origin and adaptation. Am. J. Plant Sci. 2011. Vol. 2(3). P. 381–395. doi: 10.4236/ajps.2011.23044
Ozheredova I.P., Parnikoza I.Yu., Poronnik O.O., Kozeretska I.A., Demidov S.V., Kunakh V.A. Mechanisms of Antarctic vascular plant adaptation to abiotic environmental factors. Cytology and Genetics. 2015. Vol. 49(2). P. 139–145. doi: 10.3103/S0095452715020085
Alberdi M., Bravo L.A., Gutiérrez A., Gidekel M., Corcuera L.J. Ecophysiology of Antarctic vascular plants. Physiol. Plant. 2002. Vol. 115. P. 479–486. doi: 10.1034/j.1399-3054.2002.1150401.x
Martazinova V.F., Timofeev V.E., Ivanova E.K. Sovremennyy regionalnyy klimat Antarkticheskogo poluostrova i stantsii akademik Vernadskiy. Ukrainian Antarctic Journal. 2010. No 9. P.231–248.
Convey P. Reproduction of Antarctic flowering plants. Antarct. Sci. 1996. Vol. 8(2). P.127–134. doi: 10.1017/S0954102096000193
Kerivnyi normatyvnyi dokument. Ekolohichno-ahrokhimichna pasportyzatsiia poliv ta zemelnykh dilianok. Ed. by O.O. Sozinov. Kyiv: Ahrarna nauka, 1996. P. 16–20.
Misra R.R., Smith G.T., Waalkes M.P. Evaluation of the direct genotoxic potential of cadmium in four different rodent cell lines. Toxicol. 1998. Vol. 126. P. 103–114. doi: 10.1016/S0300-483X(98)00003-1
Hartwig A., Schwerdtle T. Interaction by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol. Lett. 2002. Vol. 127. P. 47–54. doi: 10.1016/S0378-4274(01)00482-9
Jonak C., Nakagami H., Hirt H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 2004. Vol. 136. P. 3276–3283. doi: 10.1104/pp.104.045724
Zahrychuk O.M., Drobyk N.M., Kozeretska I.A. et al. Vvedennia v kulturu in vitro Deschampsia Antarctica Desv. (Poaceae) z dvokh rayoniv Pryberezhnoi Antarktyky. Ukrainian Antarctic Journal. 2011–2012. No 10–11. P. 289–295.
Zahrychuk O. M., Herts A. I., Drobyk N. M., Kunakh V. A. Callus formation and regeneration of Deschampsia antarctica Desv. (Poaceae) in culture in vitro. Biotechnologia Acta. 2013. Vol. 6(6). P. 77–85.
Doyle J.J., Doyle J.L. A rapid DNA isolation of fresh leaf tissue. Phytochem. Bull. 1987. Vol. 19. P. 11–15.
Schluter P. M., Harris S. A. Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Notes. 2006. Vol. 6(2). P. 569–572. doi: 10.1111/j.1471-8286.2006.01225.x
Gichner T., Patkova Z., Szakova J. et al. DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and gamma-rays. Environ. Exp. Bot. 2008. Vol. 62. P. 113–119. doi: 10.1016/j.envexpbot.2007.07.013
Fojtova M., Kovarik A. Genotoxic effect of cadmium is associated with apoptotic changes in tobacco cells. Plant Cell Environ. 2000. Vol. 23. P. 531–537. doi: 10.1046/j.1365-3040.2000.00573.x
Yi H., Meng Z. Genotoxicity of hydrated sulfur dioxide on root tips of Allium sativum and Vicia faba. Mutat. Res. 2003. Vol. 537. P. 109–114. doi: 10.1016/S1383-5718(03)00054-8
Steinkellner H., Mun-Sik K., Helma C. et al. Genotoxic effects of heavy metals: comparative investigation with plant bioassay. Environ. Mol. Mutagen. 1998. Vol. 31. P. 183–191. doi: 10.1002/(SICI)1098-2280(1998)31:2<183::AID-EM11>3.0.CO;2-8
Angelis K.J., Mcguffie M., Menke M., Schubert I. Adaption to alkylation damage in DNA measured by the comet assay. Environ. Mol. Mutagen. 2000. Vol. 36. P. 146–150. doi: 10.1002/1098-2280(2000)36:2<146::AID-EM9>3.0.CO;2-5
Liu W., Li P. J., Qi X. M. et al. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere. 2005. Vol. 61. P. 158–167. doi: 10.1016/j.chemosphere.2005.02.078
Kumar Rai P., Kumar G. The genotoxic potential of two heavy metals in inbred lines of maize (Zea mays L.). Turk. J. Bot. 2010. Vol. 34. P. 39–46. doi: 10.3906/bot-0801-6
Drazkiewicz M., Tukendorf A., Baszynski T. Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation. J. Plant Physiol. 2003. Vol. 160. P. 247–254. doi: 10.1078/0176-1617-00558
Monteiro M.S., Rodriguez E., Loureiro J. et al. Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Ecotoxicol. Environ. Saf. 2010. Vol. 73(6. P. 1231–1237. doi: 10.1016/j.ecoenv.2010.06.020
Liu W., Sun L., Zhong M. et al. Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting. Chemosphere. 2012. Vol. 89. P. 1048–1055. doi: 10.1016/j.chemosphere.2012.05.068
Gjorgieva D., Kadifkova-Panovska T., Ruskovska T. et al. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. BioMed Res. Intern. 2013. Vol. 2013. ID 276417. doi: 10.1155/2013/276417
Gupta M., Sarin N. B. Heavy metal induced DNA changes in aquatic macrophytes: Random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker. J. Environ. Sci. 2009. Vol. 21. P. 686–690. doi: 10.1016/S1001-0742(08)62324-4
Al-Qurainy F. Application of inter simple sequence repeat (ISSR marker) to detect genotoxic effect of heavy metals on Eruca sativa (L.). Afr. J. Biotechnol. 2010. Vol. 9(4). P. 467–474.
Reddy M. P., Sarla N., Siddiq E.A. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica. 2002. Vol. 128(1). P. 9–17. doi: 10.1023/A:1020691618797
Lopez-Millan A.-F., Sagardoy R., Solanas M. et al. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ. Exp. Bot. 2009. Vol. 65. P. 376–385. doi: 10.1016/j.envexpbot.2008.11.010
Unyayar S., Celik A., Ozlem F. et al. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis. 2006. P. 1-5. doi: 10.1093/mutage/gel001
Amirthalingam T., Velusamy G., Pandian R. Cadmium-induced changes in mitotic index and genotoxicity on Vigna unguiculata (Linn.). J. Env. Chem. Ecotoxicol. 2013. Vol. 5(3). P. 57–62. doi: 10.5897/JECE11.008
Azimi A., Shahriari F., Fotovat A. et al. Investigation of DNA changes in wheat (Triticum aestivum L.) induced by cadmium using random amplified polymorphic DNA (RAPD) analysis. Afr. J. Biotechnol. 2013. Vol. 12(16). P. 1921–1929.
Gjorgieva D., Kadifkova-Panovska T., Mitrev S. et al. Assessment of the genotoxicity of heavy metals in Phaseolus vulgaris L. as a model plant system by Random Amplified Polymorphic DNA (RAPD) analysis. J. Environ. Sci. Health, Part A. 2012. Vol. 47(3). P. 366–373. doi: 10.1080/10934529.2012.645784
Korsun S.H. Otsinka vmistu biogennykh elementiv ta vazhkykh metaliv u verkhniomu shari gruntu ostroviv poblyzu zakhidnoho uzberezhzhia Antarktychnoho pivostrova. Ukr. Antarctic Journal. 2005. No 3. P. 151–154.
Lu Z., Cai M., Wang J. et al. Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environ. Monit. Assess. 2012. Vol. 184(11). P. 7013–702. doi: 10.1007/s10661-011-2476-x