Molecular organization of 5S ribosomal DNA of Apis mellifera ligustica
Abstract
Aim. 5S rDNA belongs to the moderately repeated, tandemly arranged sequences composed of coding regions and intergenic spacers (IGS). The IGS comparison is successfully used for the study of microevolution and in the molecular taxonomy of plants, vertebrates and some invertebrates. However, 5S rDNA of insects still remains insufficiently characterized. In this article, we analyze the molecular organization and polymorphism of 5S rDNA IGS of Apis mellifera ligustica. Methods. DNA extraction, PCR amplification, cloning of 5S rDNA, sequencing, bioinformatics analysis. Results. The 5S rDNA IGS of A. m. ligustica was cloned into the plasmid vector and sequenced. The obtained sequences were compared with the same genomic region of A. m. carnica. It was found that the genome of A. m. ligustica contains one class of IGS, which is represented by structural subclasses 1A, 1B, 1G and 1F. Two of these subclasses, 1G and 1F, which are identified here for the first time, are specific for A. m. ligustica. Conclusions. The obtained results show a high intra- and intergenomic polymorphism of 5S rDNA within the subspecies of Apis mellifera.
Keywords: 5S rDNA, intergenic spacer, repeated sequences, Apis mellifera, Apidae.
References
Abou-Shaara H.F., Abbas A.S., AL-Kahtani S.N., Taha El-K. A. et al. Exploring the non-coding regions in the mtDNA of some honey bee species and subspecies. Saudi. J. Bio. Sci. 2021. Vol. 28(1). P. 204-209. doi: 10.1016/j.sjbs.2020.09.047
Bagriy I.G. About relatives of Ukrainian bees. Sci. Herald Nat. Agrar. Univ. 2006. Vol. 94. P. 90–93.
Bardella V.B., Cabral-de-Mello D.C. Uncovering the molecular organization of unusual highly scattered 5S rDNA: The case of Chariesterus armatus (Heteroptera). Gene. 2018. Vol. 646. P. 153-158. doi: 10.1016/j.gene.2017.12.030
Merheb B., Al Homsi R., Chaddad A., Nasr Z. Genetic screening of Apis mellifera subspecies in Lebanon using mitochondrial DNA test. J. Apicultural Res. 2020. Vol. 59 (4). P. 658-662. doi: 10.1080/00218839.2020.1740407
Cavalcante M.G., Nagamachi C.Y., Pieczarka J. C., Noronha R.C.R. Evolutionary insights in Amazonian turtles (Testudines, Podocnemididae): co-location of 5S rDNA and U2 snRNA and wide distribution of Tc1/Mariner. Biol. Open. 2020. Vol. 9(4): bio049817. doi: 10.1242/bio.049817
Cherevatov O.V., Melnik E.O., Volkov R.A. Polymorphism of COI gene in honey bees from different regions of Ukraine. Bull. Vavilov Soc. Genet. Breed. Ukr. 2020. Vol. 18(1-2). P. 22-28. [in Ukrainian] doi: 10.7124/visnyk.utgis.18.1-2.1351
Cherevatov O.V., Panchuk I.I., Kerek S.S., Volkov R.A. Molecular diversity of the CoI–CoII spacer region in the mitochondrial genome and the origin of the Carpathian bee. Cytol. Genet. 2019. Vol. 53(4). P. 276-281. doi: 10.3103/S0095452719040030
Cherevatov O.V., Roshka N.M. Polymorphism of the СоІІ gene of honey bees in the western regions of Ukraine. Sci. Herald Chernivtsi Univ. Biol. (Biol. System.). 2020. Vol. 12(2). P. 174-179. [In Ukranian] doi: 10.31861/biosystems2020.02.174
Cherevatov О.V., Statna А.P., Volkov R.A. Novel structural subclass of Lycaena tityrus 5S ribosomal DNA. Bull. Vavilov Soc. Genet. Breed. Ukr. 2012. Vol. 10(2). P. 202-207. [in Ukrainian]
Cherevatov О.V., Volkov R.A. Molecular organization of 5S rDNA of Satyrus drias (Lepidoptera). Rep. Natl. Acad. Sci. Ukr. 2011a. Vol. 1. P. 140-145. [in Ukrainian]
Cherevatov О.V., Volkov R.A. Molecular organization of 5S ribosomal DNA of Polyommatus icarus. Bull. Vavilov Soc. Genet. Breed. Ukr. 2010. Vol. 8(2). P. 271-278. [in Ukrainian]
Cherevatov О.V., Volkov R.A. Organization of 5S ribosomal DNA of Melitaea trivia. Cytol. Genet. 2011b. Vol. 45(2). P. 115-120. doi: 10.3103/S0095452711020034
Cherevatov V.F., Ferkaljak V.Y., Volkov R.A. Hybridization of honey bees (Apis mellifera L.) in the territory of Chernivtsy region (Ukraine). Natl. Mus. Ethnogr. Nat. Hist. Mold. Sci. Bull. 2016. Vol. 24 (37). P. 62-67.
Cherevatov V.F., Ferkaljak V.Y., Volkov R.A. Uncontrolled hybridization of honeybees (Apis mellifera L.) in the territory of Ivano-Frankivsk region. Bull. Vavilov Soc. Genet. Breed. Ukr. 2014. Vol. 12(2). P. 234-240. [in Ukrainian]
Ding Q., Li R., Ren X., Chan L. et al. Genomic architecture of 5S rDNA cluster and its variations within and between species. bioRxiv. 2021. doi: 10.1101/2021.02.17.431734
Fedoriak M.M., Timochko L.I., Kulmanov O.M., Volkov R. A. et al. Winter losses of honey bee (Apis mellifera L.) colonies in Ukraine (monitoring results of 2015-2016). Ukr. J. Ecol. 2017. Vol. 7 (4). P. 604-613. doi: 10.15421/2017_167
Fedoriak M. M., Tymochko L. I., Kulmanov O. M., Rudenko S. S. et al. Honey bee (Apis mellifera L.) colony losses in Ukraine after the winter of 2016-2017 within the international monitoring. Sci. Herald Chernivtsy Univ. Biol. (Biol. Systems). 2018. Vol. 10(1). P. 37-46. [in Ukrainian] doi: 10.31861/biosystems2018.01.037
Francoso E., de Souza Araujo N., Ricardo P. C., Santos P.K.F. et al. Evolutionary perspectives on bee mtDNA from mito-OMICS analyses of a solitary species. Apidologie. 2020. Vol. 51. P. 531-544. doi: 10.1007/s13592-020-00740-x
Hailu T.G., D’Alvise P., Tofilski A., Fuchs S. et al. Insights into Ethiopian honey bee diversity based on wing geomorphometric and mitochondrial DNA analyses. Apidologie. 2020. Vol. 51. P. 1182–1198 doi: 10.1007/s13592-020-00796-9
Henriques D., Chavez-Galarza J., Quaresma A., Neves C.J. et al. From the popular tRNAleu-COX2 intergenic region to the mitogenome: insights from diverse honey bee populations of Europe and North Africa. Apidologie. 2019. Vol. 50. P. 215-229. doi: 10.1007/s13592-019-00632-9
Higgins D.G., Bleasby A.J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Bioinformatics. 1992. Vol. 8 (2). P. 189-191. doi: 10.1093/bioinformatics/8.2.189
Hristov P., Shumkova R., Georgieva A., Sirakova D. et al. Methods for genotyping of the honey bee (Apis mellifera L.: Hymenoptera: Apidae) in Bulgaria. – In: I.Y. Abdurakhmonov (Ed.) Genotyping. IntechOpen. 2018. doi: 10.5772/intechopen.73306
Ishchenko O.O., Bednarska O.I., Panchuk I.I. Application of 5S ribosomal DNA for molecular taxonomy of subtribe Loliinae (Poaceae). Cytol. Genet. 2021. Vol. 55(1). P. 10-18. doi: 10.3103/S0095452721010096
Ishchenko O.O., Panchuk I.I., Andreev І.O., Kunakh V.A. et al. Molecular organization of 5S ribosomal DNА of Deschampsia antarctica. Cytol. Genet. 2018. Vol. 52. P. 416-421. doi: 10.3103/S0095452718060105
Layat E., Probst A.V., Tourmente S. Structure, function and regulation of transcription factor IIIA: from Xenopus to Arabidopsis. Biochim. Biophys. Acta. 2013. Vol. 1829(3-4). P. 274-282. doi: 10.1016/j.bbagrm.2012.10.013
Madella S., Grubbs K., Alburaki M. Non-invasive genotyping of honey bee queens Apis mellifera L.: Transition of the DraI mtDNA COI-COII test to in silico. Insects. 2020. Vol. 12. P. 19. doi: 10.3390/insects12010019
Martins C., Galetti P.M. Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes? Genetica. 2001. Vol. 111. P. 439-446 doi: 10.1023/a:1013799516717
Morton D.G., Sprague K.U. In vitro transcription of a silkworm 5S RNA gene requires an upstream signal. Proc. Natl. Acad. Sci. USA. 1984. Vol. 81(17). P. 5519-5522 doi: 10.1073/pnas.81.17.5519
Muñoz I., De la Rúa P. Wide genetic diversity in Old World honey bees threaten by introgression. 2021. Apidologie. Vol. 52(1). P. 200–217. doi: 10.1007/s13592-020-00810-0
Nelson D.W., Linning R.M., Davison P. J., Honda B. M. 5´-flanking sequences required for efficient transcription in vitro of 5S RNA genes, in the related nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Gene. 1998. Vol. 218. P. 9-16 doi: 10.1016/s0378-1119(98)00392-8
Roshka N.M., Cherevatov O.V., Volkov R.A 5S ribosomal DNA of peach blossom Thyatira batis L. Sci. Herald Chernivtsi Univ., Biol. (Biol. Syst.). 2020. Vol. 12(1). P. 20-25. [In Ukranian]
Roshka N.M., Cherevatov O.V., Volkov R.A. Molecular organization and polymorphism of 5S rDNA in Carpathian bees. Cytol. Genet. 2021. Vol. 55 (5). P. 405-413. doi: 10.3103/S0095452721050108
Ruttner F. Biogeography and taxonomy of honeybees. Springer-Verlag Berlin Heidelberg GmbH. 1988. doi: 10.1007/978-3-642-72649-1
Ruttner F. Naturgeschichte der Honigbienen. Munich: Ehrenwirth, Gemany. 1992.
Schiebelhut L.M., Abboud S.S., Gómez Daglio L.E., Swift H.F. et al. A comparison of DNA extraction methods for high‐throughput DNA analyses. Mol. Ecol. Res. 2017. Vol. 17(4). P. 721-729. doi: 10.1111/1755-0998.12620
Sharp S. J., Garcia A.D. Transcription of the Drosophila melanogaster 5S RNA gene requires an upstream promoter and four intragenic sequences elements. Mol. Cell Biol. 1988. Vol. 8(3). P. 1266-1274. doi: 10.1128/mcb.8.3.1266-1274.1988
Simon L., Rabanal F.A., Dubos T., Oliver C. et al. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Res. 2018. Vol. 46(6). P. 3019-303. doi: 10.1093/nar/gky163
Statna A.P., Cherevatov O.V., Volkov R.A. Molecular organization and evolution of 5S ribosomal DNA of Sphinx ligustri. Bull. Vavilov Soc. Genet. Breed. Ukraine. 2014. Vol. 11(2). P. 276-282. [In Ukranian]
Tyler B.M. Transcription of Neurospora crassa 5S rRNA genes requires a TATA box and three internal elements. J. Mol. Biol. 1987. Vol. 196. P. 801-811. doi: 10.1016/0022-2836(87)90406-2
Tynkevich Y., Nevelska A., Chorney I., Volkov R. Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus. Bull. Vavilov Soc. Genet. Breed. Ukraine. 2015. Vol. 13(1). P. 81-87. [in Ukrainian]
Tynkevich Y.O., Volkov R.A. 5S ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application. Cytol. Genet. 2019. Vol. 53(6). P. 459-466. doi: 10.3103/S0095452719060100
Utzeri V.J., Ribani A., Taurisano V., Banqué C., Fontanesi L. Distribution of the main Apis mellifera mitochondrial DNA lineages in Italy assessed using an environmental DNA approach. Insects. 2021. Vol. 12. P. 620. doi: 10.3390/insects12070620
Vierna J., Wehner S., Höner zu Siederdissen C., Martínez-Lage A. et al. Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity. 2013. Vol. 111. P. 410-421. doi: 10.1038/hdy.2013.63
Vizoso M., Vierna J., González-Tizón A. M., Martínez-Lage A. The 5S rDNA gene family in mollusks: characterization of transcriptional regulatory regions, prediction of secondary structures, and long-term evolution, with special attention to mytilidae mussels. J. Heredity. 2011. Vol. 102(4). P. 433-447. doi: 10.1093/jhered/esr046
Vozarova R., Herklotz V., Kovařík А., Tynkevich Y.O. et al. Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis. Front. Plant Sci. 2021. Vol. 12. Art. 643548. P. 1-15. doi: 10.3389/fpls.2021.643548