Characteristics of wheat varieties of Poltava State Agrarian Academy breeding with gene markers that determine important agronomical traits

  • G. O. Chebotar Odesa I. I. Mechnikov National University, Department of Genetics and Molecular Biology, Ukraine, 65082, Odesa, Dvoryanska str, 2
  • S. V. Chebotar Odesa I. I. Mechnikov National University, Department of Genetics and Molecular Biology, Ukraine, 65082, Odesa, Dvoryanska str, 2
  • M. K. Toporash Odesa I. I. Mechnikov National University, Department of Genetics and Molecular Biology, Ukraine, 65082, Odesa, Dvoryanska str, 2
  • A. O. Bakuma Odesa I. I. Mechnikov National University, Department of Genetics and Molecular Biology, Ukraine, 65082, Odesa, Dvoryanska str, 2
  • V. M. Tyshchenko Poltava State Agrarian Academy, Skovorody str., 1/3, Poltava, 36003, Ukraine


The aim of the work was to determine alleles of Ppd-А1, Ppd-В1, Ppd-D1, Rht8c, Rht-B1, Rht-D1, Pina-D1, Pinb D1, Wx-A1, Wx-B1, Wx-D1 genes of wheat varieties from the Poltava State Agrarian Academy (PSAA). Methods. DNA extraction, allele-specific and SSR-PCR, electrophoresis in agarose and polyacrilamide gels. Results. The vast majority of varieties (9) can be characterized as Ppd-А1b, Ppd-В1b, Ppd-D1a, Rht8c, Rht-B1a, Rht-D1a, Pina-D1a, Pinb-D1b, Wx-A1a, Wx-B1a, Wx-D1a. Levada, Tsarychanka, Lyutenka and Orzhytsіa varieties were carriers of Ppd-А1b, Ppd-В1b, Ppd-D1a, Rht8c, Rht-B1a, Rht-D1b, Pina-D1a, Pinb D1b, Wx-A1a, Wx-B1a, Wx-D1a alleles, and the cultivar Sуdor Kovpak — Ppd-А1b, Ppd-В1b, Ppd-D1a, Rht8c, Rht-B1a, Rht-D1a, Pina-D1a, Pinb-D1а/b, Wx-A1a, Wx-B1a/b, Wx-D1a — was heterogeneous by genes, which are responsible for the quality of the grain. Conclusions. PSAA winter wheat varieties are characterized by a high degree of homogenity in the alleles of genes that determine important economic and agronomical traits. This fact could be explained by the needs of a certain growing zone and traditional breeding approaches of wheat in the PSAA.

Keywords: Аllele-specific markers; winter bread wheat; dwarfing genes; sensitivity to photoperiod; Wx; Pina and Pinb.


Gasperini D., Powell W., Greenland A. et al. Genetic and molecular characterisation of the Rht8 locus in bread wheat 19th ITMI / 3rd COST Tritigen Joint Workshop. (Clermont-Ferrand, 31st of August - 4th of September). Clermont-Ferrand. 2009. P. 171.

Peng J., Richards D.E., Hartley N.M. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999. Vol. 400. P. 256–261. doi: 10.1038/22307

Pearce S., Saville R., Vaughan S.P. et al. Molecular characterisation of Rht-1 dwarfing genes in hexaploid wheat (Triticum aestivum). Plant Physiology Preview. 2011. doi: 10.1104/pp.111.183657.

Gent M.P.N., Kiyomoto R.K. Physiological and agronomic consequences of Rht genes in wheat. Journal of Crop Production. 1997. Vol. 1(1). P. 27–46.

Braun H.-J., Dixon J., Crouch J., Payne T. Wheat research to serve the future needs of developing world. Conventional and molecular breeding of field and vegetable crops: International Conference (Novi Sad, 24-27 November 2008). – Novi Sad, Serbia, 2008. P. 15.

Rebetzke G.J., Bonnett D.G., Ellis M.H. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Res. 2012. Vol. 127. P. 17–25. doi: 10.1016/j.fcr.2011.11.003

Rebetzke G.J., Ellis M.H., Bonnett D.G. et al. Height reduction and agronomic performance for selected gibberellin responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res. 2011. Vol. 126. P. 86–96. doi: 10.1016/j.fcr.2011.09.022

Lytvynenko M.A. Theoretical bases and methods of winter bread wheat breading for increasing adaptive potential for the conditions of the steppe of Ukraine: author's abstract dis ... Dr. Agricultural Sciences Kiev, 2001. 46 p.

Addisu M., Snape J.W., Simmonds J.R., Gooding M.J. Reduced height (Rht) and photoperiod insensitivity (Ppd) allele associations with establishment and early growth of wheat in contrasting production systems. Euphytica. 2009. Vol. 166. P. 249–267. doi: 10.1007/s10681-008-9838-7

Bonnet D.G., Ellis M.H., Rebetzke G.J. Agronomic performance of GA-responsive semidwarf wheats. 8th International Wheat Conference: abstracts of oral and poster presentations. (St. Petersburg, June 1-4, 2010). St. Petersburg. 2010. P. 155–156.

Tang H., Jiang Y., He B., Hu Y. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agricultural Sciences in China. 2009. Vol. 8. P. 1028–1038. doi: 10.1016/S1671-2927(08)60310-7

Nishida H., Yoshida T., Kawakami K. et al. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Molecular Breeding. 2013. Vol. 31(1). P. 27–37. doi: 10.1007/s11032-012-9765-0

Diaz A., Zikhali M., Turner A., Isaac P., Laurie D. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One. 2012. Vol. 7: e33234. doi: 10.1371/journal.pone.0033234

Beales J., Turner A., Griffiths S. et al. A Pseudo-Response Regulator is misexpressed in the photoperiod intensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007. Vol. 115. P. 721–723. doi: 10.1007/s00122-007-0603-4

Takenaka S., Kawahara T. Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences. Theor. Appl. Genet. 2012. Vol. 125(5). P. 999–1014. doi: 10.1007/s00122-012-1890-y

Langer S.M., Longin C.F.H., Würschum T. Flowering time control in European winter wheat. Front Plant Sci. 2014. Vol. 5: 537. doi: 10.3389/fpls.2014.00537

Worland A.J. Korzun V., Sayers E.J. et al. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica. 1998. Vol. 100(1-3). P. 385–394. doi: 10.1023/A:1018327700985

Chebotar S.V., Kurakina K.O., Khokhlov O.M. et al. Phenotypic effects of alleles of the common wheat puroindoline genes. Cytol Genet. 2012. Vol. 46(4). P. 202-209. doi: 10.3103/S0095452712040056

Chen F., He Z.H., Xia X.C. et al. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet. 2006. Vol. 112(3). P. 400–409. doi: 10.1007/s00122-005-0095-z

Giroux M.J., Morris C.F. A glycine to serine change in puroindoline b is associated with great hardness and low levels of starch-surface friabilin. Theor. Appl. Genet. 1997. Vol. 95(5-6). P. 857–864. doi: 10.1007/s001220050636

Ikeda T.M., Ohnishi N., Nagamine T. et al. Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J. Cereal Sci. 2005. Vol. 41(1). P. 1–6. doi: 10.1016/j.jcs.2004.10.002

Petrova I.S., Chebotar S.V., Rybalka A.I., Syvolap Yu.M. Identification of Wx genotypes in the winter wheat varieties. Cytol Genet. 2007. Vol. 6. P. 11–17. doi: 10.3103/S0095452707060023

Chebotar S.V., Börner A., Sivolap Yu.M. Analysis of dwarfing genes in the genotypes of Ukrainian bread wheat varieties. Cytol Genet. 2006. Vol. 40(4). P. 12–23.

Chebotar S.V., Korzun V.N., Sivolap Yu.M. Distribution of alleles of the locus WMS261, marking the dwarfing gene Rht8, in the varieties of bread wheat of southern Ukraine. Genetics. 2001. Vol. 37(8). P. 1075–1080.

Bakuma A. O., Bulavka N.V., Chebotar S.V. The genotypes of modern Myronivsky varieties of winter wheat for Ppd-A1, Ppd-B1, Ppd-D1 genes and their sensitivity to photoperiod. Herald of ONU. Biology. 2016. Vol. 28(1). P. 75-88.

Balashova I.A., Fayt V.I. Variability of Ppd-1 genotypes in winter wheat varieties of Ukrainian breeding. Genomics and biochemistry of agricultural crops: International scientific conference (Odesa, 14 September 2017). Odesa, 2017. P. 20–21.

Korzun V.N., Röder M.S., Ganal M.W. et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 1998. Vol. 96. P. 1104–1109. doi: 10.1007/s001220050845

Ellis M.H., Spielmeyer W., Gale K.R. et al. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor. Appl. Genet. 2002. Vol. 105. P. 1038–1042. doi: 10.1007/s00122-002-1048-4

Gautier M.F., Aleman M.E., Guirao A. et al. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Molecular Biology. 1994. No 25. P. 43–57.

McLauchlan A., Ogbonnaya F.C., Hollingsworth B. et al. Development of robust PCR-based DNA markers for each homoeo-allele of granule bound starch synthase and application in wheat breeding programs. Aust. J. Agric. Res. 2001. Vol. 52. P. 1409–1416

Nakamura T., Vrinten P., Saito M., Konda M. Rapid classification of partial waxy wheats using PCR-based markers. Genome. 2002. Vol. 45. P. 1150–1156. doi: 10.1139/g02-090

Promega Technical Manual. Gene Print. STR Systems. Printed in USA. Revised. 7. 1999. 52 p.

Chebotar G.A., Motsnyy I.I., Chebotar S.V., Sivolap Yu.M. Effects of dwarfing genes on the genetic background of wheat varieties in southern Ukraine. Cytol Genet. 2012. Vol. 46(6). P. 366-372. doi: 10.3103/S0095452712060023

Srinivasachary, Gosman N., Steed A. et al. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly intheir influence on resistance to Fusarium head blight. Theor. Appl. Genet. 2009. Vol. 118. P. 695–702. doi: 10.1007/s00122-008-0930-0

Botwright T.L., Rebetzke G.J., Condon A.G., Richards R.A. Influence of the gibberellin-responsive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann. Bot. 2005. Vol. 95. P. 631–639. doi: 10.1093/aob/mci069

Ellis M.H., Rebetzke G.J., Chandler P. et al. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 2004. Vol. 31. P. 583–589. doi: 10.1071/FP03207

Rebetzke G.J., Richards R.A. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Australian journal of agricultural research. 2000. Vol. 51(2). P. 235–245.

Gasperini D., Greenland A., Hedden P. et al. Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. Journal of Experimental Botany. 2012. Vol. 63(12). P. 4419-4436. doi: 10.1093/jxb/ers138

Chebotar G.O., Chebotar S.V., Motsnyy I.I., Sivolap Yu.M. Clarification of the Rht8–Ppd-D1 gene linkage on the 2D chromosome of winter bread wheat. Cytol. Genet. 2013. Vol. 47(2). P. 70–74. doi: 10.3103/S0095452713020047

Mokanu N.V., Fayt V.I. Differences in the effects of alleles of the genes Vrd1 and Ppd-D1 with respect to winter hardiness, frost tolerance and yield in winter wheat. Cytol. Genet. 2008. Vol. 42(6). P. 384–390. doi: 10.3103/S0095452708060054

Bakuma A.O., Popovych Yu. A., Motsnyy I.I. et al. Effects of Ppd-D1a allele on the growth rate and agronomic characteristics of wheat, determined using early-riped analogue lines. Genomics and biochemistry of agricultural crops: International scientific conference (Odesa, 14 September 2017). Odesa, 2017. P. 17–19.

Seki M., Chono M., Matsunaka H. et al. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat. Breeding Sci. 2011. Vol. 61. P. 405–412. doi: 10.1270/jsbbs.61.405

Goncharov N.P. Genetic control of the photoperiodic response in winter wheat (review). Agriculture biology. 1986. No 11. P. 84–90.