Endogenous retroelemens of fish and molluscs

  • L. P. Buchatskyi Taras Shevchenko Kyiv National University, Ukraine, 01601, Kyiv, Volodymyrska str., 64; Institute of Fisheries NAAS of Ukraine, Ukraine, 03164, Kyiv, Obukhivska str., 135


Aim. Analysis of scientific literature sources devoted to the study of retroelements of fish and mollusks. Results. It is shown that endogenous retroelements are widespread both among fish and mollusks. Endogenous retroviruses of fish, like exogenous ones, are also widespread, but their total number in the genomes of fish is much less than in other vertebrates. The Steamer retroelement, the presence of which is associated with the development of tumors in molluscs, can be transmitted horizontally between these invertebrates. In addition, it is able to pass into organisms of other types of aquatic animals, including vertebrates, sea urchins and corals. Conclusions. The study of the retroelements of fish and molluscs, as the most ancient organisms, makes it possible to more fully trace the stages of evolution of aquatic animals. It was shown that retroelements of fish and molluscs play an important role in the development of antiviral defense in vertebrates. The low cost of mollusks and well-developed methods of their cultivation put these invertebrates at the forefront as model systems for studying the molecular mechanisms of tumor processes in vertebrates and humans.
Keywords: retroelements, fish, molluscs, tumors.


Aguilera F. Neoplasia in Mollusks: What Does it Tell us about Cancer in Humans? A Review. Journal of Genetic Disorders. 2017. Vol. 1, N 1. P. 1-7.

Aiewsakun P., Katzourakis A. Endogenous viruses: Connecting recent and ancient viral evolution. Virology. 2015. Vol. 479, P. 26-37. doi: 10.1016/j.virol.2015.02.011

Arkhipova I. R, Meselson M. Diverse DNA transposons in rotifers of the class Bdelloidea. Proc. Natl. Acad. Sci. U S A. 2005. Vol. 102, P. 1178111786. doi: 10.1073/pnas.0505333102

Arriagada G., Metzger M. J., Muttray A. F. Activation of transcription and retrotransposition of a novel retroelement, Steamer, in neoplastic hemocytes of the mollusk Mya arenaria. Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, Р. 14175-14180. doi: 10.1073/pnas.1409945111

Belyi V. A., Levine A. J., Skalka A-M. Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes. PLoS Pathog. 2010. 6(7):e1001030. doi: 10.1371/journal.ppat.1001030

Bouneau L., Fischer C, Ozouf-Costaz C., Froschauer A., Jaillon O., Coutanceau J., Korting C., Weissenbach J., Bernot A., Volff J-N. An active non-LTR retrotransposon with tandem structure in the compact genome of the pufferfish Tetraodon nigroviridis. Genome Research. 2003. Vol. 13, P. 1686-1695. doi: 10.1101/gr.726003

Buchatsky L. P., Galakhin K. A. Tumors of fish in reservoirs of Ukraine. Kiev, DIA, 2009. 144 p. [in Russian].

Carducci F, Barucca M, Canapa A, Biscotti M. Rex Retroelements and Teleost Genomes: An Overview. International Journal of Molecular Sciences. 2018. vol. 19, P. 3653-3660. doi: 10.3390/ijms19113653

Chalopin D., Naville M, Plard F., Galiana D, Volff J. N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 2015. V. 7, P. 567580. doi: 10.1093/gbe/evv005

Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Ve'ron G, Mulot B, Dupressoir A, Heidmann T. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc Natl. Acad Sci U S A. 2012. Vol.109, P.E432-E441. doi: 10.1073/pnas.1115346109

Deragon J-M, Zhang X. Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Systematic biology. 2006. Vol. 55, P. 949-956. doi: 10.1080/10635150601047843

Eickbush T. H., Malik H. S. Origins and Evolution of Retrotransposons. T. H. Eickbushand, H.S Malik. Mobile DNA II. ASM Press. 2002. P. 1111-1144. doi: 10.1128/9781555817954.ch49

Evgen'ev M. V., Arkhipova I. R. Penelope-like elements - a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res. 2005. Vol. 110, P. 510-521. doi: 10.1159/000084984

Farley C. A. Probable neoplastic disease of the hemopoietic system in oysters, Crassostrea virginica and Crassostrea gigas. Natl Cancer Inst Monogr. 1969. Vol. 31, P. 541-555.

Farley C. A. Proliferative disorders in bivalve mollusks. Mar Fish Rev. 1976. P. 30-33.

Ferreira D. C., Porto-Foresti F., Oliveira C., Foresti F. Transposable elements as a potential source for understanding the fish genome. Mobile Genetic Elements. 2011. Vol. 1, P. 112-117. doi: 10.4161/mge.1.2.16731

Fraser B. A., Künstner A., Reznick D. N., Dreyer C., Weigel D. Population Genomics of Natural and Experimental Populations of Guppies (Poecilia reticulata). Molecular Ecology. 2015. Vol. 24, P. 389-408. doi: 10.1111/mec.13022

Furano A. V., Duvernell D. D., Boissinot S. L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. TRENDS in Genetics. 2004. Vol.20, No. 1, P. 9-14. doi: 10.1016/j.tig.2003.11.006

Galimany E., Sunila I. Several cases of disseminated neoplasia in mussels Mytilus edulis (L.) in western Long Island Sound. J. Shellfish Res. 2008. Vol. 27, P. 1201 -1207. doi: 10.2983/0730-8000-27.5.1201

Gifford R., Kabat P., Martin J., Lynch C., Tristem M. Evolution and distribution of class II-related endogenous retroviruses. J. Virol. 2005. Vol. 79, P. 64786486. doi: 10.1128/JVI.79.10.6478-6486.2005

Han G.-Z. Extensive retroviral diversity in shark. Retrovirology. 2015. Vol.12, P. 34-39. doi: 10.1186/s12977-015-0158-4

Han G.-Z., Worobey M. An endogenous foamy-like viral element in the coelacanth genome. PLoS Pathog. 2012. 8:e1002790. doi: 10.1371/journal.ppat.1002790

Hayward A., Cornwallis C. K., Jern P. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112, P. 464-469. doi: 10.1073/pnas.1414980112

Henzy J. E., Gifford R. J., Kenaley C. P., Johnson W. E. An Intact retroviral gene conserved in spiny-rayed fishes for over 100 My. Mol. Biol. Evol. 2016. Vol. 34(3), P. 634-639. doi: 10.1093/molbev/msw262

Hous M. L., Kim, C. H., Reno P. W. Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity. Dis. Aquat. Organ. 1998. Vol. 34, P. 187-192. doi: 10.3354/dao034187

Katzourakis A., Gifford R. J., Tristem M., Gilbert M. T., Pybus O. G. Macroevolution of complex retroviruses. Science. 2009. Vol. 325(5947), P. 1512-1518. doi: 10.1126/science.1174149

Koga A, Sakaizumi M, Hori H. Transposable elements in medaka fish. Zoolog. Sci. 2002. Vol. 19, P. 1-6. doi: 10.2108/zsj.19.1

Kunakh V. A. Mobile genetic elements and plant genome plasticity. Kyiv, Logos, 2013. 300р. [in Ukrainian].

Liu D., Yang J., Tang W., Zhang X., Royster C. M., Zhang M. SINE Retrotransposon variation drives. Ecotypic disparity in natural populations of Coilia nasus. Mobile DNA. 2020. Vol. 11, P. 1-14. doi: 10.1186/s13100-019-0198-8

Llorens C. Network dynamics of eukaryotic ltr retroelements beyond phylogenetic trees. Biology Direct. 2009. Vol. 4, P. 41 -46. doi: 10.1186/1745-6150-4-41

Martin S. L., Bushman F. D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol. 2001. Vol. 21, P. 467-475. doi: 10.1128/MCB.21.2.467-475.2001

Metzger M., Paynter A., Siddall M., Goff S. Horizontal transfer of retrotransposons between bivalves and other aquatic species of multiple phyla. Proc Natl Acad Sci U S A. 2018. Vol.115, N 18, P. 4227-4235. doi: 10.1073/pnas.1717227115

Metzger M., Reinisch C., Sherry J. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell. 2015. Vol.161, P. 255-263. doi: 10.1016/j.cell.2015.02.042

Metzger M., Villalba A., Carballal M. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature. 2016. Vol. 534(7609), P. 705-709. doi: 10.1038/nature18599

Murchison E. P. Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene. 2008. Vol. 27, P. 19-30. doi: 10.1038/onc.2009.350

Murgia C., Pritchard J.K., Kim S.Y. et al. Clonal origin and evolution of a transmissible cancer. Cell. 2006. Vol. 126, P. 477-487. doi: 10.1016/j.cell.2006.05.051

Naville M., Volff J.-N. Endogenous retroviruses in fish genomes: From relics of past infections to evolutionary innovations? Frontiers of Microbiology. 2014. vol. 7, P. 1197-1206. doi: 10.3389/fmicb. 2016.01197.

Near T. J., Eytan R. I., Dornburg A., Kuhn K. L., Moore J. A., Davis M. P, Wainwright P. C, Friedman M., Smith W. L. Resolution of rayfinned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A. 2012. Vol. 109, P. 1369813703. doi: 10.1073/pnas.1206625109

Newton A. L., Lewbart G. A. Invertebrate oncology: Diseases, diagnostics and treatment. Vet Clin North Am Exot Anim. 2017. Pract 20, P. 1-19. doi: 10.1016/j.cvex.2016.07.001

Nogare D. E., Clark M. S., Elgar G., Frame I. G., Poulter R. T. Xena, a full-length basal retroelement from tetraodontid fish. Mol. Biol. Evol. 2002. Vol. 19(3), P. 247-255. doi: 10.1093/oxfordjournals.molbev.a004078

Ogiwara I., Miya M., Ohshima K., Okada N. Retropositional parasitism of SINEs on LINEs: Identification of SINEs and LINEs in elasmobranches. Mol Biol Evol. 1999. Vol. 16, P. 12381250. doi: 10.1093/oxfordjournals.molbev.a026214

Ogiwara I., Miya M., Ohshima K., Okada N. V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res. 2002. Vol. 12, P. 316-321. doi: 10.1101/gr.212302

Paynter A., Metzger J., Sessa J. Evidence of horizontal transmission of the cancer-associated Steamer retrotransposon among ecological cohort bivalve species. Dis Aquat Org. 2017. Vol. 124, P. 165-168. doi: 10.3354/dao03113

Pearse A. M., Swift K. Allograft theory: transmission of devil facial tumour disease. Nature. 2006. Vol. 439, P. 549-556. doi: 10.1038/439549a

Rovnak J., Quackenbush S. L. Walleye Dermal Sarcoma Virus: Molecular Biology and Oncogenesis. Viruses. 2010. Vol. 2, P. 1984-1999. doi: 10.3390/v2091984

Ruboyianes R. Foamy-like endogenous retroviruses are abundant and extensive in teleosts. A thesis on master of science. The University of Arizona. 2015. 52 p.

Ruboyianes R., Worobey M. Foamy-like endogenous retroviruses are extensive and abundant in teleosts. Virus Evolution. 2016. Vol. 2(2), 032. doi: 10.1093/ve/vew032

Schartl M. Platyfish and swordtails: a genetic system for the analysis of molecular mechanisms in tumor formation. Trends Genet. 1995. Vol. 11, P. 185-189. doi: 10.1016/S0168-9525(00)89041-1

Schartl M., Walter R. B., Shen Y., Garcia T., Catchen J., Amores A., The Genome of the Platyfish, Xiphophorus maculatus, Provides Insights into Evolutionary Adaptation and Several Complex Traits. Nature Genetics. 2013. Vol. 45, P. 567-572. doi: 10.1038/ng.2604

Shao F., Han M., Peng Z. Evolution and diversity of transposable elements in fish genomes. Nature Scientific Reports. 2019. Vol. 9, P. 15399-15406. doi: 10.1038/s41598-019-51888-1

Shen C.-H., Steiner L. A. Genome Structure and Thymic Expression of an Endogenous Retrovirus in Zebrafish. J. Virol. 2004. Vol. 78, P. 899-911. doi: 10.1128/JVI.78.2.899-911.2004

Sunila I., Farley C. A. Environmental limits for survival of sarcoma-cells from the soft-shell clam Mya arenaria. Diseases of Aquatic Organisms. 1989. Vol. 7, P. 111-115. doi: 10.3354/dao007111

Volf J. N., Lehrach H., Reinhardt R., Chourrout D. Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica. Mol. Biol. Evol. 2004. Vol. 21, P. 2022-2033. doi: 10.1093/molbev/msh207

Volff J. N., Körting C., Sweeney K., Schartl M. The nonLTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol. 1999. Vol. 16, P. 1427-1438. doi: 10.1093/oxfordjournals.molbev.a026055

Volff J. N., Körting C., Meyer A., Schartl M. Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol. 2001. Vol. 18, P. 427-431. doi: 10.1093/oxfordjournals.molbev.a003819

Volff J. N., Körting C., Schartl M. Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol. 2000. Vol. 17, P. 1673-1684. doi: 10.1093/oxfordjournals.molbev.a026266

Walker C., Bottger A., Mulkern J. Mass culture and characterization of tumor cells from a naturally occurring invertebrate cancer model: Application for human and animal disease and environmental health. Biol Bull. 2009. Vol. 216, P. 23-39. doi: 10.1086/BBLv216n1p23

Wittbrodt J., Adam D., Malitschek B., Mäueler W., Raulf F., Telling A., Robertson S., Schartl M. Novel putative receptor kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature. 1989. Vol. 341, P. 415-421. doi: 10.1038/341415a0

Xu X., Zhao H., Gong Z., Han G.-Z. Endogenous retroviruses of non-avian/ mammalian vertebrates illuminate diversity and deep history of retroviruses. PLoS Pathog. 2018. Vol.14(6): e1007072. doi: 10.1371/journal.ppat.1007072