Cluster analysis in the selection of buckwheat

  • L. A. Vilchinska State Agrarian and Engineering University in Podilia, 13, Schevchenko Str., Kamianets-Podilskyi, Khmelnytskyi region, Ukraine, 32300
  • O. P. Gorodyska State Agrarian and Engineering University in Podilia, 13, Schevchenko Str., Kamianets-Podilskyi, Khmelnytskyi region, Ukraine, 32300
  • O. O. Kaminna State Agrarian and Engineering University in Podilia, 13, Schevchenko Str., Kamianets-Podilskyi, Khmelnytskyi region, Ukraine, 32300
  • M. V. Dyianchuk State Agrarian and Engineering University in Podilia, 13, Schevchenko Str., Kamianets-Podilskyi, Khmelnytskyi region, Ukraine, 32300

Abstract

Abstract. The purpose: using cluster analysis to shorten the selection process duration in buckwheat by grouping hybrid combinations into cluster classes by the similarity of morphological estimates, yield and technological parameters Methods. We evaluated samples of buckwheat (124), created by hybridization methods using samples of the Buckwheat genus Fagopyrum Mill. using tree-like clustering with the Euclidean distances measure. Results. Based on the cluster analysis results, we made a distribution of the 124 studied samples, created by the hybridization method, into four main clusters according to the main morphological, yield and technological indicators of grain quality. It was found that 66 samples, 53.6 %, refer to the second cluster with the average parameters of the main biometric, yield and technological indicators of grain quality. Only 25 % of samples or 31 samples were characterized by high economic-value indicators. Very high indicators of the studied samples are characterized by 13 samples — 10.5 %, very low — 14 samples — 11.3 %. It has been practically established that the morphological improvement, yield and grain quality technological indicators in buckwheat varieties from Belarus — Alenushka, Zhniaiarka, Smuglianka; Tatarstan — Kazan large-fruited; France — collection sample №. 4013; Russia — Mig, Solianska, Skorostyhla 86. Bringing them to hybridization with varieties of Ukrainian selection buckwheat makes it possible to obtain valuable raw material. Conclusions. The cluster analysis usage in the buckwheat selection makes it possible in the early stages of the selection process to perform a quick assessment, distribution and the source material selection.

Keywords: buckwheat, cluster analysis, morphological, yield and grain quality technological indicators

References

Vilchynska L. A. Novi sorty grechky — Malynka, Kvitneva, Perlyna Podillia. Dosiahnennia i problemy genetyky, selektsii ta biotekhnolohii. Proceedings of the IX Congress of VUSGB. Kyiv: Lohos, 2012. P. 32–37.

Vilchynska L. A., Horodyska O. P. Otsinka novogo selektsiinogo materialu grechky za oznakoiu skorostyglosti. Black Sea Scientific Journal Of Academic Research. Tbilisi, Georgia, 2014. V. 14. P. 14–19.

Vilchynska L. A., Horodyska O. P. Posukhostiikyi sortozrazok grechky 7/07. Zbirnyk naukovykh prats PDATU. 2015. No 23. P. 135–143. ISSN 2410-1125.

Taranenko L. K., Yatsyshen O. L. Pryntsypy, metody i dosiagnennia selektsii grechky (Fagopyrum esculentum Moench): monohrafiia. — Vinnytsia: TOV «Nilan-LTD», 2014. 224 p.

Vavylov N. I. Teoretycheskye osnovy selektsii. Moskva: Nauka, 1979. 293 p.

Tyshchenko V. N., Chekalin N. M. Geneticheskie osnovi adaptivnoy selektsii ozimoy pshenitsy v zone Lesostepi. Poltava, 2005. 270 p.

Chekalin M. M., Tyshchenko V. M., Batashova M. E. Selektsiia i genetyka okremykh kultur: navchalnyi posibnyk. Poltava : FOP Hovorov S. V., 2008. 368 p.

Melnyk A. V. Vykorystannia klasternoho analizu za pidboru sortiv i hybrydiv ripaku yarogo dlia vyroshchuvannia v Livoberezhnomy Lisostepy Ukrainy. Visnyk Poltavskoi derzhavnoi akademii, 2013. No 4. P.6–11.

The methodology of state varietal testing of agricultural crops. Moscow, 1989. No 2. P.3–25.

Tsarenko O. M., Zlobin Y. A., Skliar V. H., Panchenko S. M. Kompiuterni metody v silskomy gospodarstvi ta biolohii : navchalnyi posibnyk. Sumy: Universytetska knyga, 2000. 202 p.