Total reducing capacity in Arabidopsis thaliana cat2cat3 knockout mutants under heat stress

  • I. I. Panchuk Dept. of Molecular Genetics and Biotechnology, Yuri Fedkovych National University of Chernivtsi, Ukraine, 58012, Kotsubynski str. 2, Chernivtsi
  • I. M. Buzduga Dept. of Molecular Genetics and Biotechnology, Yuri Fedkovych National University of Chernivtsi, Ukraine, 58012, Kotsubynski str. 2, Chernivtsi
  • R. A. Volkov Dept. of Molecular Genetics and Biotechnology, Yuri Fedkovych National University of Chernivtsi, Ukraine, 58012, Kotsubynski str. 2, Chernivtsi

Abstract

Aim. It was investigated whether the simultaneous loss of the two catalase isoforms CAT2 and CAT3 can be compensated by the increase in content of low-molecular weight antioxidants. To clarify this question, the total reducing capacity in Arabidopsis wild type and cat2cat3 knockout mutants was evaluated under optimal growth conditions and after heat stress. Methods. Leaves of Arabidopsis thaliana wild type and cat2cat3 knockout mutants were exposed to high temperatures. The content of water-soluble low molecular weight antioxidants was evaluated by determining the total reducing capacity using iodometry. Results. In intact cat2cat3 mutants there is an 1.7 times increase in the content of low-molecular weight antioxidants compared to wild type plants. A high content of these compounds in knockout plants was also observed upon heat stress. Patterns of changes in total reducing capacity differ between wild type and knockout lines. Conclusion. The loss of activity of the catalase isoforms САТ2 and САТ3 in knock-out mutants of Arabidopsis results in activation of non-enzymatic antioxidant defenses. The increase of the content of low-molecular weight antioxidants is one of the mechanisms that provide protection of mutant plants from chronic oxidative stress, both under optimal cultivation conditions and under the influence of elevated temperatures.

Keywords: multigenic family, heat shock, total reducing capacity, knockout mutants, Arabidopsis thaliana.

References

Bita C. E., Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science. 2013. Vol. 4. P. 1–18. doi: 10.3389/fpls.2013.00273

Qu A., Ding Y. F., Jiang Q., Zhu C. Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications. 2013. Vol. 432(2). P. 203–207. doi: 10.1016/j.bbrc.2013.01.104

Foyer C. H., Noctor G. Redox signaling in plants. Antioxidants and Redox Signaling. 2013. Vol.18(16). P. 2087–2090. doi: 10.1089/ars.2013.5278

Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science. 2014. Vol. 2. P. 1–13. doi: 10.3389/fenvs.2014.00053

Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant Journal. 2016. Vol. 90(5). P. 856–867. doi: 10.1111/tpj.13299

Anjum N. A., Sharma P., Gill S. S., Hasanuzzaman M., Khan E. A., Kachhap K., Sofo A. Catalase and ascorbate peroxidase – representative H2O2-detoxifying heme enzymes in plants. Environmental Science and Pollution Research International. 2016. Vol. 23(19). P. 19002–19029. doi: 10.1007/s11356-016-7309-6

Mhamdi A., Queval G., Chaouch S., Vanderauwera S., Breusegem F. V., Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany. 2010. Vol. 61(15). P. 4197–4220. doi: 10.1093/jxb/erq282

Zimmermann P., Heinlein C., Orendi G., Zentgraf U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell and Environment. 2006. Vol. 29(6). P.1049–1060. doi: 10.1111/j.1365-3040.2005.01459.x

Sofo A., Scopa A., Nuzzaci M., Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Science. 2015. Vol. 16(6). P. 13561–13578. doi: 10.3390/ijms160613561

Scandalios J. G., Acevedo A., Ruzsa S. Catalase gene expression in response to chronic high temperature stress in maize. Plant Science. 2000. Vol. 156. P. 103–110. doi: 10.1016/s0168-9452(00)00235-1

Foyer C. H., Noctor G. Redox signaling in plants. Antioxidants and Redox Signaling. 2013. Vol. 18(16). P. 2087–2090. doi: 10.1089/ars.2013.5278

Sharma P., Jha A. B., Dubey R. S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012. Vol. 2012. P. 1–26. doi: 10.1155/2012/217037

Szarka A., Tomasskovics B., Banhegyi G. The ascorbateglutathione-α-tocopherol triad in abiotic stress response. Internat. Journal of Molecular Science 2012. Vol. 13(4). P. 4458–4483. doi: 10.3390/ijms13044458

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology. 2006. Vol. 141(2). P. 312–322. doi: 10.1104/pp.106.077073

Noctor G., Mhamdi A., Chaouch S., Han Y. I., Neukermans J., Marquez-Garcia B., Foyer C. H. Glutathione in plants: an integrated overview. Plant, Cell and Environment. 2012. Vol. 35(2). P. 454–484. doi: 10.1111/j.1365-3040.2011.02400.x

Rohozynskyj M. S, Shelifist A. E., Kostyshyn S. S., Volkov R. A. Influence of heavy metals ions on plant in vitro culture. Physiology and Biochemistry of cultivated plants. 1998. Vol. 30(6). – P. 465-471.

Mehr Z., Khajeh H., Bahabadi S., Sabbagh S. Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. International Journal of Agronomy and Plant Production. 2012. Vol. 3. P. 710–715. doi: 10.1556/018.67.2016.2.7

Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environment Studies. 2006. Vol. 15(4). P. 523.

Panchuk I. I., Volkov R. A., Schoeffl F. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology. 2002. Vol. 129. P. 838–853. doi: 10.1104/pp.001362

Doliba I. M., Volkov R. A., Panchuk I. I. Method of catalase activity determination in plants. Physiology and Biochemistry of cultivated plants. 2010. Vol. 42(6). P. 497–503.

Tretyakov N. N. Practice on plant physiology. M.: Kolos, 2003. 288 p.

Budzak V. V. Biometrics. Chernivtsi: Ruta, 2013. 326 p.

Panchuk I. I. Expression patterns of genes coding for antioxidant enzymes and chaperone proteins during plant development and under stress. Doctor of science dissertation. Kiev, 2015. 328 p.