Biomin is promising matrix for developing of new generation of bone tissue grafts

  • I. O. Sulikovska National Technical University of Ukraine “Igor Sikorsky KPI”,Kyiv, Ukraine
  • V. V. Balatskyi Institute of Molecular biology and Genetics NAS of Ukraine, Kyiv, Ukraine
  • T. A. Kochubei Institute of Molecular biology and Genetics NAS of Ukraine, Kyiv, Ukraine
  • T. P. Ruban Institute of Molecular biology and Genetics NAS of Ukraine, Kyiv, Ukraine
  • N. V. Ulianchych Frantsevich Institute for Problems of Materials Sciences of NAS of Ukraine, Kyiv, Ukraine
  • O. A. Piven Institute of Molecular biology and Genetics NAS of Ukraine, Kyiv, Ukraine


Developing of new transplants generation or "living" grafts are extremely promising area of regenerative medicine. Such transplants are a combination of achievements of modern materials science and cell biology and consist of synthetic analogues of bone and MSK patient. The aim of our study was to analyze the biocompatibility of bioactive ceramics of different chemical composition and determine the optimal composites for further development of "living" grafts Materials and MethodsThe work was carried out with primary cell cultures using. MSCs and embryonic fibroblasts were obtained from GFP mice. With cells biology methods using we have analyzed the cytotoxity and biocompatibility of 6 Biomin composites. Metabolic activity of MSCs was determined by MTT test. Results We selected 3 composites are not toxic to the embryonic fibroblasts: BiominGTlC- 500 Biomin GTG-1, Biomin T-500, but analysis of the cell proliferation showed that only Biomin TG-1 and Biomin T-500 doesn’t limit cells growth. It has been shown that MSC CD73+ cultivated with Biomin has lower level of metabolism compared to control, but Biomin T-500 is more promising for future application. Conclusions The most suitable and promising material for bone graft developing is Biomin T-500 which has a size of granules 0.4-0.6 mm and consists of β-tricalcium phosphate

Keywords: Biomin, bioactiveceramics, cell culture, MSCs, graft


O’Keefe R. J., Mao J. Bone tissue engineering and regeneration: From discovery to the clinic—an overview. Tissue Eng Part B Rev. 2011. Vol. 17(6). P. 389-392. doi: 10.1089/ten.TEB.2011.0475

Duda G. N. Bone repair and regeneration. Clin Orthop Relat Res. 2011. Vol. 469(11). P:3070–3071. doi: 10.1007/s11999-011-2010-z

Grigor'ian A. S., Toporkova A. K. Problemy integratsii implantatov v kostnuiu tkan (teoreticheskie aspekty). Moskva: Tekhnosfera, 2007. 128 p.

Korenkov O. V. Morphological features of healing in experimental cortical layer defect of long bone upon condition of β-tricalcium phosphate implantation. Orthopaedics, Traumatology and Prosthetic. 2015. No 3. P. 46-50.

Arseniev I. G. Eksperimentalno-morfologicheskoe obosnovanie klinicheskogo primeneniia degradiruemykh bioimplantatov v kompleksnom lechenii perelomov i lozhnykh sustavov dlinnykh trubchatykh kostey: dis. kand. med. nauk: 14.00.22, 14.00.15. Moskva, 2007. 200 p.

Ulianchych N., Mishchenko O., Kondratets I., Zaitseva N. Controlled properties of osteotropic biomins implant material for various clinical applications. Russian Journal of Biological Research. 2014. Vol. 2(2). P. 100-112.

Kon E., Filardo G., Roffi A., Di Martino A., Hamdan M., De Pasqual L., Merli M. L., Marcacci M. Bone regeneration with mesenchymal stem cells. Clin Cases Miner Bone Metab. 2012. Vol. 9(1). P. 24-27.

Davies O. G., Cooper P. R., Shelton R. M., Smith A. J., Scheven B. A. Isolation of adipose and bone marrow mesenchymal stem cells using CD29 and CD90 modifies their capacity for osteogenic and adipogenic differentiation. J Tissue Eng. 2015. Vol. 6. P. 1-10. doi: 10.1177/2041731415592356

Grottkau B. E., Lin Y. Osteogenesis of adipose-derived stem cells. Bone Res. 2013. Vol. 1(2). P: 133-145. doi: 10.4248/BR201302003

Rhijn M. R., Khairoun M., Korevaar S. S. et al Human bone marrow- and adipose tissue-derived mesenchymal stromal cells are immunosuppressive in vitro and in a humanized allograft rejection model. J Stem Cell Res Ther. 2013. Suppl 6(1):20780. doi: 10.4172/2157-7633.S6-001

Ulianchich N.V., Ivashchenko E. A., Uvarova I.V. et al. Vozmozhnost ispolzovaniia kaltsiyfosfatnoy keramiki v kachestve nositelia lekarstvennykh sredstv. Ukrainskyy morfolohichnyy almanakh. 2010. Vol. 8(2). P. 44-48.

Huang S., Xu L., Sun Y., Wu T., Wang K., Li G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Journal of Orthopaedic Translation. 2015. Vol. 3(1). P. 26-33. doi: 10.1016/

Mantovani C., Raimondo S., Haneef M.S., Geuna S., Terenghi G., Shawcross S.G., Wiberg M. Morphological, molecular and functional differences of adult bone marrow– and adipose-derived stem cells isolated from rats of different ages. Exp Cell Res. 2012. Vol. 318(16). P. 2034–2048. doi: 10.1016/j.yexcr.2012.05.008

Nagy A., Gertsenstein M., Vintersten K., Behringer R. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor, NY: Cold SpringHarbor Laboratory Press, 2003. 814 p.