Genetic transformation of Populus nigra X P. deltoides (black poplar, clone Gradizka)

  • N. K. Kutsokon Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 148
  • V. A. Rudas Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 148
  • M. V. Shinkaruk Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 148
  • O. R. Lakhneko Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 148
  • B. V. Morgun Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 148
  • N. M. Rashydov Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 148
  • D. M. Grodzynsky Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 148

Abstract

Aim. To carry out genetic transformation of poplar Populus nigra x P. deltoides clone Gradizka with the model gene construct pCB002 carrying selective gene of kanamycin resistance and marker gene of β-glucuronidase. Methods. Genetic transformation was performed with the using leaf, stem and petiole poplar explants. Transformants were selected on the medium with kanamycin, and transgene was identified by polymerase chain reaction (PCR) and histochemical GUS assay. Results. Successful transformants selected on kanamycin media were confirmed by the presence of PCR-product for the gene nptII with the length 700 bp, and gus gene expression was also observed. Conclusions. Protocol for genetic transformation of P. nigra x P. deltoides clone Gradizka established here will be used for poplar genetic modification to create new clones with commercially important traits.

Keywords: genetic transformation, Populus sp., microclonal propagation.

References

Chaix G., Monteuuis O. Biotechnology in the forestry sector. Preliminary review of biotechnology in forestry, including genetic modification. FAO, 2004. P. 19–56.

Walter C., Killerby S. O. A global study on the state of forest tree genetic modification. Preliminary review of biotechnology in forestry, including genetic modification. FAO, 2004. P. 57–95.

Kutsokon N. K. Main trends in the genetic transformation of Populus species. Cytology and Genetics. 2011. Vol. 45. P. 352–361. DOI: 10.3103/S009545271106003X

Ball J., Carle J., Del Lungo A. Contribution of poplars and willows to sustainable forestry and rural development. Unasylva. 2005. Vol. 56. P. 3–9.

Wheeler N. Synthesis: a snapshot of the global status and trends in forest biotechnology. Preliminary review of biotechnology in forestry, including genetic modification. FAO. 2004. P. 3–18.

Lu M. Z. Update on the transgenic poplar plantations and research in China. Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a biobased society, Orvieto, Italy, 20–25 September, 2010. P. 8.

Fillatti J. J., Sellmer J., McCown B. H., Haissig B. E., Comai L. Agrobacterium mediated transformation and regeneration of Populus. Mol. Gen. Genet. 1987. V. 206 (2). P. 192–199. doi: 10.1007/BF00333574

Han K. H., Meilan R., Ma C., Strauss S. H. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). J. Plant Cell Reports. Vol. 19. 2000. P. 315–320. doi: 10.1007/s002990050019

Confalonieri M., Balestrazzi A., Bisoffi S., Carbonera D. In vitro culture and genetic engineering of Populus spp.: forest tree improvement. Plant Cell, Tissue and Organ Culture. 2003. Vol. 72. P. 109–138. doi: 10.1023/A:1022265504775

Giri C. C., Shyamkumar B., Anjaneyulu C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees. 2004. Vol. 18. P. 115–135. doi: 10.1007/s00468-003-0287-6

Kutsokon N., Libantova J., Rudas V., Rashydov N., Grodzinsky D., Durechova D. Advancing protocols for poplar in vitro propagation, regeneration and selection of transformants. Journal of Microbiology, Biotechnology and Food Sciences. Vol. 2 (Special issue). 2013. 1447– 1454.

Consensus document on the biology of Populus L. (Poplars). Series on harmonization of regulatory oversight in biotechnology, No. 16. Organisation for Economic Cooperation and Development (OECD), 2000. 56 p.

Los S.A. (PI) Project report, N 7 "Conservation of genetic resources of forest species and obtaining genetically improved reproductive material for forest and bioenergetic plantations". Ukrainian Research Institute of Forestry & Forest Melioration. KharkIv, 2013.

Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusion: ß-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J. 1987. Vol. 6. P. 3901–3907.

Matveeva O.Y., Tyshchenko O.M., Morgun B.V. Patent No 77331. Ukraine. A method of producing of mays transgenic plants with the using of Agrobacterium transformation in planta. Published: 11.02.2013. Bul. No3, 2013. 5 p.

Meilan R., Ma C. Poplar (Populus spp.). In Meth. Mol. Biol. 2006. Vol. 344. P. 143–151. doi: 10.1385/1-59745-131-2:143.

Yevtushenko D. P., Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep. 2010. Vol. 29(3). P. 211–221. doi: 10.1007/s00299-009-0806-z

Murray M. J., Thompson W. F. Rapid isolation of high molecular weight DNA. Nucl. Acids Res. 1980. Vol. 8 (19). P. 4321–4325.

Krens F. A., Trifonova A., Keizer L. C. P., Hall R. D. The effect of exogenously-applied phytohormones on gene transfer efficiency in sugarbeet (Beta vulgaris L.). Plant Science. 1996. Vol. 116. P. 97–106. doi: 10.1016/0168-9452(96)04357-9