Free prolin content in Arabidopsis thaliana Cat2 and Cat3 knockout mutants under salt stress

  • N. O. Didenko Yuri Fedkovych National University of Chernivtsi, Ukraine, 58012, Chernivtsi, Kotsubynski str., 2
  • I. M. Buzduga Yuri Fedkovych National University of Chernivtsi, Ukraine, 58012, Chernivtsi, Kotsubynski str., 2
  • R. A. Volkov Yuri Fedkovych National University of Chernivtsi, Ukraine, 58012, Chernivtsi, Kotsubynski str., 2
  • I. I. Panchuk Yuri Fedkovych National University of Chernivtsi, Ukraine, 58012, Chernivtsi, Kotsubynski str., 2

Abstract

Aim. In plants, the enzymatic and non-enzymatic environmental stress resistance mechanisms function in a concerted manner, but the role of specific isoforms of antioxidant enzymes and their relationship to low molecular weight protective compounds is poorly understood. To investigate this question free proline levels were compared under salt stress conditions in wild-type Arabidopsis thaliana and knockout mutants for the catalase genes Cat2 and Cat3. Methods. Free proline content was measured under various treatments of plants with sodium chloride. Results. It was shown that under salt stress conditions free proline increase is impaired in leaves of mutants lacking CAT2 and CAT3 activity. In addition, cat3 knockout line shows a reduced basal level of proline under non-stress conditions. Conclusions. Suppression of response to salt stress points to a possible link between the rearrangement of the antioxidant system in the Cat genes knockouts and the regulation of protective cellular response to salt stress.

Key words: Arabidopsis thaliana, knockout mutants, catalase, proline, sodium chloride.

References

Kim Y. H., Kim C. Y., Lee H. S., Kwak S. S. Changes in activities of antioxidant enzymes and their gene expression during leaf development of sweet potato. Plant Growth Regulation. 2009. Vol. 58(3). P. 235–241. doi: 10.1007/s10725-009-9371-2

Orendi G. Expression von Katalasen während der Blattseneszens und unter verschiedenen Stressbedingungen in Arabidopsis thaliana (L.) Heynh.: Dissertation Verlag Grauer, 2001. 135 p.

Panchuk I. I., Zentgraf U., Volkov R. A. Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta. 2005. Vol. 222(5). P. 926–932. doi: 10.1007/s00425-005-0028-8

Rusnak T. O., Doliba I. M., Volkov R. A., Panchuk I. I. Guaiacol peroxidase activity in Cat2 knock-out mutant of Arabidopsis thaliana upon heat stress treatment. Physiology and Biochemistry of cultivated plants. 2013. Vol. 45(3). P. 246–253.

Doliba I. M., Volkov R. A., Panchuk I. I. Activity of catalase and ascorbate peroxidase in Cat2 knock-out mutant of Arabidopsis thaliana upon cadmium stress. Visn. Ukr. Tov. Genet. Sel. 2011. Vol. 9(2). P. 200–209.

Doliba I. M., Volkov R. A., Panchuk I. I. Effect of copper ions on lipid peroxidation in cat2 knock-out mutant of Arabidopsis thaliana. Visn. Ukr. Tov. Genet. Sel. 2012. Vol. 10(1). P. 13–19.

Deinlein U., Stephan A. B., Horie T., Luo W., Xu G., Schroeder J. I. Plant salt-tolerance mechanisms. Trends in Plant Science. 2014. Vol. 19(6). P. 371–379. doi: 10.1016/j.tplants.2014.02.001

Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology. 2000. Vol. 51(1). P. 463–499. doi: 10.1146/annurev.arplant.51.1.463

Sneha S., Rishi A., Chandra S. Effect of short term salt stress on chlorophyll content, protein and activities of catalase and ascorbate peroxidase enzymes in Pearl Millet. American Journal of Plant Physiology. 2013. Vol. 9(1). P. 32–37. doi: 10.3923/ajpp.2013

Lv W. T., Lin B., Zhang M., Hua X. J. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiology. 2011. Vol. 156(4). P. 1921–1933. doi: 10.1104/pp.111.175810

Szabados L., Savoure A. Proline: a multifunctional amino acid. Trends in Plant Science. 2010. Vol. 15(2). P. 89–97. doi: 10.1016/j.tplants.2009.11.009

Chen C., Dickman M. B. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Science of the United States of America. 2005. Vol. 102(9). P. 3459–3464. doi: 10.1073/pnas.0407960102

Arbona V., Flors V., Jacas J., Garcia-Agustin P., Gomez-Cadenas A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant and Cell Physiol. 2003. Vol. 44(4). P. 388–394. doi: 10.1093/pcppcg059

Major P. S., Zakharova V. P, Velikozhon L. G. Changes of free proline content in winter wheat plants during autumn-winter period. Physiology and Biochemistry of cultivated plants. 2009. Vol. 41(5). P. 371–383.

Filipchuk T. V. Proline content as indicator of tolerance lawn grasses to UV-C radiation. Scientific works SWorld. Biology. Ecology and biotechnology. 2013. Vol. 17(4). P. 24–28.

Bates L. S., Waldren R. P., Teare I. D. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973. Vol. 39(1). P. 205–207. doi: 10.1007/BF00018060

Budzak V. V. Biometrics. Chernivtsi: Ruta, 2013. 326 p.

Frugoli J. A., Zhong H. H., Nuccio M. L., McCourt P., McPeek M. A., Thomas T. L. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiology. 1996. Vol. 112(1). P. 327–336. doi: 10.1104/pp.112.1.327

Ghoulam C., Foursy A., Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany. 2002. Vol. 47(1). P. 39–50. doi: 10.1016/S0098-8472(01)00109-5

Celik O., Atak C. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turkish Journal of Biology. 2012. Vol. 36. P. 339–356. doi: 10.3906/biy-1108-11

Liu J., Zhu J. K. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiology. 1997. Vol. 114(2). P. 591–596. doi: 10.1104/pp.114.2.591

Huang Z., Zhao L., Chen D., Liang M., Liu Z., Shao H., Long X. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem Artichoke plantlets PLOS ONE. 2013. Vol. 8(4). P. 62085. doi: 10.1371/journal.pone.0062085

Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoeleetal K. ROS signaling: thenewwave? Trends in Plant Science. 2011. Vol. 16(6). P. 300–309. doi: 10.1016/j.tplants.2011.03.007

Volkov R. A., Panchuk I. I., Schöffl F. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. Journal of Experimental Botany. 2003. Vol. 54(391). P. 2343–2349. doi: 10.1093/jxberg244