Evaluation of the influence of bacterial lipopolysaccharides on the resistance of Arabidopsis thaliana to phytopathogenic bacteria

  • J. V. Shilina Institute of Cell Biology and Genetic Engineering, NAS оf Ukraine, Ukraine, 03143, Kyiv, Zabolotnogo str., 148
  • M. I. Guscha Institute of Cell Biology and Genetic Engineering, NAS оf Ukraine, Ukraine, 03143, Kyiv, Zabolotnogo str., 148
  • O. S. Molozhava Educational and Scientific Centre "Institute of Biology" of Taras Shevchenko National University, Ukraine, 003022, Kyiv, Glushkov prospect, 2
  • A. P. Dmitriev Institute of Cell Biology and Genetic Engineering, NAS оf Ukraine, Ukraine, 03143, Kyiv, Zabolotnogo str., 148


Aim. To study the effect of lipopolysaccharides derived from various strains of Pseudomonas aeruginosa on resistance of Arabidopsis thaliana to phytopathogenic bacteria. Methods. Conventional methods of plant pathology were used. Results. Lipopolysaccharides (LPS) from saprophytic P. aeruginosa strain ІMV 8614 increased resistance of wild type plants Col-0 wt and npr1 mutant plants to phytopathogenic bacteria Pseudomonas syringae ІMV 8511 and P. aeruginosa ІMV 9096. LPS of phytopathogenic P. aeruginosa ІMV 9096 increased resistance of wild-type plants to phytopathogenic bacteria P. syringae ІMV 8511. In contrast, the plants Col-0 wt pretreated with the same LPS and inoculated of P. aeruginosa ІMV 9096 showed the increased disease symptoms. Pretreatment of npr1 mutant plants by LPS 9096 caused increased lesions after treatment by both bacterial strains. Pretreatment of plants by LPS from opportunistic pathogen P. aeruginosa ІMV 9024 resulted in different effects depending on the plant genotype: in Col-0 wt plants the protective effect was observed, whereas in npr1, jin or NahG mutant plants an increase in sensitivity to infection by bacteria Pantoea sp. was observed. Conclusions. The influence of lipopolysaccharides on A. thaliana resistance to phytopathogenic bacteria depends on the bacteria from which they were isolated. The effect of LPS as one of the elicitors depends on the function of both salicylate- and jasmonate-dependent signal systems as well as the regulatory protein NPR1.

Keywords: Arabidopsis thaliana, Pseudomonas aeruginosa, lipopolysaccharide, system resistance.


Newman M.-A., Sundelin T., Nielsen J.T., Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 2013. Vol. 4. Art. 139. P. 1–14. doi: 10.3389/fpls.2013.00139

Zeidler D., Zähringer U., Gerber I., Dubery I., Hartung T., Bors W., Hutzler P., Durner J. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl Acad. Sci. USA. 2004. Vol. 101. P. 15811–15816. doi: 10.1073/pnas.0404536101

Silipo A., Erbs G., Shinya T., Dow J.M., Parrilli M., Lanzetta R., Shibuya N., Newman M.-A., Molinaro A. Glycoconjugates as elicitors or suppressors of plant innate immunity. Glycobiology. 2010. Vol. 20(4). P. 406–419. doi: 10.1093/glycob/cwp201

Newman M.-A., Dow J.M., Molinaro A., Parrilli M. Priming, induction and modulation of plant defense responses by bacterial lipopolysaccharides. J. Endotoxin Res. 2007. Vol. 13. P. 68–79. doi: 10.1177/0968051907079399

Piater L.A., Nürnberger T., Dubery I.A. Identification of a lipopolysaccharide responsive erk-like MAP kinase in tobacco leaf tissue. Mol. Plant Pathol. 2004. Vol. 5(4). P. 331–341. doi: 10.1111/j.1364-3703.2004.00234.x

Newman M.A., Von Roepenack-Lahaye E., Parr A., Daniels M.J., Dow J.M. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J. 2002. Vol. 29. P. 487–495. doi: 10.1046/j.0960-7412.2001.00233.x

Coventry H.S., Dubery I.A. Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol. Mol. Plant Pathol. 2001. Vol. 58. P. 149–158. doi: 10.1006/pmpp.2001.0323

Dow M., Newman M.-A., von Roepenack E. The induction and modulating of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 2000. Vol. 38. P. 241–261. doi: 10.1146/annurev.phyto.38.1.241

Van Wees S.C., Pieterse C.M., Trijssenaar A., Van 't Westende Y.A., Hartog F., Van Loon L.C. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microbe Interact. 1997. Vol. 10(6). P. 716–724. doi: 10.1094/MPMI.1997.10.6.716

Leeman M., Vanpelt J.A., Denouden F.M., Heinsbroek M., Pahm B., Schippers B. Induction of systemic resistance against fusarium-wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathol. 1995. Vol. 85. P. 1021–1027. doi: 10.1094/Phyto-85-1021

Graham T.L., Sequeira L., Huang, T.S. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 1977. Vol. 34. P. 424–432.

Варбанец Л.Д., Здоровенко Г.М., Книрель Ю.А. Методы исследования эндотоксинов. Киев: Наукова думка, 2006. 237 с.

Van Wees S.C.M., de Swart E.A.M., van Pelt J.A., van Loon L.C., Pieterse C.M.J. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. PNAS. 2000. Vol. 97(15). P. 8711–8716. doi: 10.1073/pnas.130425197

Козировська Н.О. Механізми природної імунності рослини. Біополімери і клітина. 2006. Т. 22(2). С. 91–101. doi: 10.7124/bc.000722

Шамрай С.Н. Иммунная система растений: базальный иммунитет. Цитология и генетика. 2014. Т. 48(4). С. 67–82. doi: 10.3103/S0095452714040057

Mishina T.E., Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 2007. Vol. 50(3). P. 500 – 513. doi: 10.1111/j.1365-313X.2007.03067.x