The influence of DNA repair enzyme MGMT and associated MARP protein on cytotoxic effect of alkylating compounds in human cell cultures
Abstract
Aim. To compare the effect of various alkylating compounds on survival of human cells containing the MARP protein only or both MGMT and MARP proteins. Methods. The following cell lines were used in this study: Hep-2 (laryngeal carcinoma cells) and 4BL (adult stem cells). The cells were treated with nitrosoguanidine and commercial drugs Temodal and Amitozyn. Cytotoxic effect of the drugs was assessed by cell colony formation assay. The presence of MGMT and MARP proteins was identified by Western-blot analysis using monoclonal anti-MGMT antibody (clone 23.2). Results. The dependence of sensitivity of Hep-2 cells containing both MGMT and MARP proteins to the low doses of alkylating compounds under study was nonlinear with a “plateau” stage. 4BL cells, containing only the MARP protein, were more sensitive to the action of alkylating compounds, especially of nitrosoguanidine. However, the treatment of 4BL cell line with relatively low concentrations of Temodal and Amitozyn drugs (up to 2 μM and up to 200μg/ml respectively) didn’t lead to a sharp decline in the number of viable cells and the concentration dependence was nonlinear, as in the case of Hep-2 cells. Conclusions. The dependence of Hep-2 and 4BL cells viability to the action of low concentrations of alkylating compounds Temodal and Amitozyn was nonlinear with a “plateau”. This suggests the fact that the repair of alkyl adducts caused by these drugs occurs in the cells, which involves not only reparative MGMT enzyme, but possibly MARP protein. However the presence of the MARP protein in the cells does not affect the repair of damages caused by the nitrosoguanidine.
Keywords: MGMT, MARP, reparation, alkylating compounds, cells viability.
References
Pegg A.E., Fang Q., Loktionova N.A. Human variants of O6-alkylguanine-DNA alkyltransferase. DNA repair. 2007. Vol. 6(8). P. 1071–1078.
Wolf P., Hu Y.C., Doffek K., Sidransky D., Ahrendt S.A. O6-methylguanine-DNA methyltransferase promoter hypermethylation shifts the p53 mutational spectrum in non-small cell lung cancer. Cancer Research. 2001. Vol. 61(22). P. 8113–8117.
Lukash L.L. Regulation of mutagenesis by exogenous biological factors in the eukaryotic cell systems. Biop. Cell. 2013. Vol. 29(4). P. 283–294.
Pegg A.E. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol. 2011. Vol. 24(5). P.618–639.
Kotandeniva D., Murphy D., Yan S., Park S., Seneviratne U., Koopmeiners J.S., Pegg A. Kanugula S., Kassie F., Tretyakova N. Kinetics of O(6)-pyridyloxobutyl-2'-deoxyguanosine repair by human O(6)-alkylguanine DNA alkyltransferase. Biochemistry. 2013. Vol. 52(23). P. 4075–4088.
Zhang J., Stevens M.F.G., Bradshaw T.D. Temozolomide: mechanisms of action, repair and resistance. Current Molecular Pharmacology. 2012. Vol. 5. P. 102–114.
Sharma S., Salehi F., Scheithauer B. W., Rotondo F., Syro L.V., Kovacs K. Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer Research. 2009. Vol. 29(10). P. 3759–3768.
Niture S. K., Velu C. S., Smith Q. R., Brat G. J., Srivenugopal K. S. Increased expression of the MGMT repair protein mediated by cysteine prodrugs and chemopreventative natural products in human lymphocytes and tumor cell lines. Carcinogenesis. 2007. Vol. 28(2). P. 378–389.
Konduri S.D., Ticku J., Bobustuc G.C., Sutphin R.M., Colon J., Isley B., Bhakat K.K., Srivenugopal K.S., Baker C.H. Blockade of MGMT expression by O6 benzyl guanine leads to inhibition of pancreatic cancer growth and induction of apoptosis. Clin. Cancer Res. 2009. Vol. 15. P. 6087–6095.
Henderson L, Albertini S, Aardema M. Thresholds in genotoxicity responses. Mut.Res. 2000. Vol. 464. P. 123–128.
Weller M., Stupp R., Hegi M.E., van den Bent M., Tonn J.C., Sanson M., Wick W., Reifenberger G. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice. Neuro Oncol. 2012. Vol.14. P.100–108.
Knudson AG. Mutation and cancer. A statistical study of retinoblastoma. PNAS. 1971. Vol. 68. P. 820–823.
Thomas A.D., Jenkins G. J.S., Kaina B., Bodger O.G., Tomaszowski K.H., Lewis P.D., Doak S.H., Johnson G.E. Influence of DNA repair on nonlinear dose-responses for mutation. Toxicological sciences. 2013. Vol. 132. P. 87–95.
Lukash L.L., Boldt J., Pegg A.E., Dolan M.E., Maher V.M., McCormick J.J. Effect of O6-alkylguanine-DNA alkyltransferase on the frequency and spectrum of mutations induced by N-methyl-N’-nitro-N-nitrosoguanidine in the HPRT gene of diploid human fibroblasts. Mutat. Res. 1991. Vol. 250. P. 397–409.
Tenori L., Ricci-Vitani L., Muzi A., Ciccarone F., Pelacchi F., Calabrese R., Runci D., Pallini R., Caiafa P., Graziani G. Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide. BMC Cancer. 2014. Vol. 14. P. 151.
Kotsarenko K. V., Lylo V. V., Macewicz L. L., Babenko L. A., Kornelyuk A. I., Ruban T. A., Lukash L. L. Change in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro. Cytology and Genetics. 2013. Vol. 47(4). P. 202–209.
Kotsarenko K. V., Lylo V. V., Ruban T.P., Macewicz L. L., Kornelyuk A. I., Chernykh S. I., Lukash L. L. Influence of EMAP II, IFN-α2b and its medicinal preparations on the MGMT protein amount in human cells in vitro. Byopolimers and Cell. 2014. Vol. 30(6). P. 448–453.
Karpova I.S., Lylo V.V., Macewicz L.L., Kotsarenko K.V., Palchykovska L.G., Ruban T.O., Lukash L.L. Lectins of Sambucus nigra as biologically active and dna-protective substances. Acta Hort. (ISHS). 2015. Vol. 1061(1). P.93 – 102.
Latypov V.F., Tubbs J.L., Watson A.J., Marriott A.S., McGown G., Thorncroft M., Wilkinson O.J., Senthong P., Butt A., Arvai A.S., Millington C.L., Povey A.C., Williams D.M., Santibanez-Koref M.F., Tainer J.A., Margison G.P. Atl1 regulates choice between global genome and transcription-couple repair of O(6)-alkylguanines. Mol. Cell. 2012. Vol. 47(1). P. 50–60.
Margison G.P., Butt A., Pearson S.J., Wharton S., Watson A.J., Marriott A., Caetano C.M.P.F., Hollins J.J., Rukazenkova N., Begum G., Santibάñez-Koref M.F. Alkyltransferase-like proteins. DNA repair. 2007. Vol. 6. P. 1222–1228.
Macewicz L.L., Kushniruk V.O., Iatsyshyna A.P., Kotsarenko K. V., Lylo V. V., Akopyan G. R., Huleuk N. L., Mykytenko D. O., Lukash L. L. Correlation of mutagenesis level with expression of reparative enzyme O6-methylguanine DNA methyltransferase during establishment of cell lines in vitro. Biopolymers and Cell. 2013. Vol. 29(6). P. 480–486.
Потопальська Ю.А., Юркевич Л. Н., Негребецька Е. М. Протипухлинна дія препарату амітозин та його аналога амітозинобераміду на пухлини рослин. Доповiдi Національної академії наук України. 2010. № 9. С. 185–190.
Фрешни Р.Я. Культура животных клеток: практическое руководство; пер. 5-го англ. изд. М.: БИНОМ. Лаборатория знаний, 2010. 691 с.
Morton E.N., Margison G.P. Increased O6Alky1guanine-DNA alkyltransferase activity in chinese hamster V79 cells following selection with chloroethylating agents. Carcinogenesis. 1988. Vol. 9(1). P. 45–49.
Aldridge G.M., Podrebarac D.M., Greenough W.T., Weiler I.J. The use of total protein stains as loading controls: an alternative to high abundance single protein controls in semi-quantitative immunoblotting. J. Neurosci. Meth. 2008. Vol. 172(2). P. 250–254.