Genomic analysis of the Antarctic actinomycete Micromonospora endolithica strain AA-459

Keywords: bacteria, actinomycetes, Micromonospora, Аntarctic, genomic analysis

Abstract

Aim. To investigate the genome annotation of M. endolithica AA-459 for the presence of unique genes and their combinations, as well as to assess the production potential of the strain by analysing secondary metabolism clusters. Methods. Genome annotation was performed using the RAST tool, and the search for secondary metabolism clusters was performed using the AntiSMASH tool. Results. Genome annotation identified 6,593 coding regions, including 9 rRNA and 67 tRNA genes. Functional characterization revealed genes spanning 24 subsystems. Protein metabolism was represented by 235 genes, carbohydrate metabolism involved 266 genes, 281 genes involved in amino acid metabolism, 99 genes associated with lipid and fatty acid metabolism. AntiSMASH analysis identified 17 potential secondary metabolite clusters in the genome of M. endolithica AA-459. Notably, two clusters showed high homology to those of known compounds. Conclusions. The genome analysis of M. endolithica AA-459 demonstrated the high production potential of the strain, which indicates the importance of the Antarctic region in the context of new compound discovery. However, the number of described compounds from this region remains low, which may be due to the lack of optimal conditions for the expression of the relevant genes. Further research in this area will reveal the biotechnological potential of Antarctic actinomycetes.

References

Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., ... & Zagnitko, O. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008. Vol. 9, P. 1–15. https://doi.org/10.1186/1471-2164-9-75.

Bernhard, G., & Stierle, S. Trends of UV radiation in Antarctica. Atmosphere. 2020. Vol. 11(8), P. 795. https://doi.org/10.3390/atmos11080795.

Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., ... & Weber, T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research. 2023. Vol. 51(W1), P. 46–50. https://doi.org/10.1093/nar/gkad344.

Brüssow, H. The antibiotic resistance crisis and the development of new antibiotics. Microbial Biotechnology. 2024. Vol. 17(7), P. e14510. https://doi.org/10.1111/1751-7915.14510.

Byun, B. J., & Kang, Y. K. Conformational preferences and pKa value of selenocysteine residue. Biopolymers. 2011. Vol. 95(5), P. 345–353. https://doi.org/10.1002/bip.21581.

Carrothers, J. M., York, M. A., Brooker, S. L., Lackey, K. A., Williams, J. E., Shafii, B., ... & McGuire, M. K. Fecal microbial community structure is stable over time and related to variation in macronutrient and micronutrient intakes in lactating women. The Journal of Nutrition. 2015. Vol. 145(10), P. 2379–2388. https://doi.org/10.3945/jn.115.211110.

Hirsch, P., Mevs, U., Kroppenstedt, R. M., Schumann, P., & Stackebrandt, E. Cryptoendolithic Actinomycetes from Antarctic Sandstone Rock Samples: Micromonospora endolithica sp. nov. and two Isolates Related to Micromonospora coerulea Jensen 1932. Systematic and Applied Microbiology. 2004. Vol. 27(2), P. 166–174. https://doi.org/10.1078/072320204322881781.

Hui, M. L. Y., Tan, L. T. H., Letchumanan, V., He, Y. W., Fang, C. M., Chan, K. G., ... & Lee, L. H. The extremophilic actinobacteria: from microbes to medicine. Antibiotics. 2021. Vol. 10(6), P. 682. https://doi.org/10.3390/antibiotics10060682.

Kodani, S., Hudson, M. E., Durrant, M. C., Buttner, M. J., Nodwell, J. R., & Willey, J. M. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proceedings of the National Academy of Sciences. 2004. Vol. 101(31), P. 11448–11453. https://doi.org/10.1073/pnas.0404220101.

Lasch, C., Gummerlich, N., Myronovskyi, M., Palusczak, A., Zapp, J., & Luzhetskyy, A. Loseolamycins: A group of new bioactive alkylresorcinols produced after heterologous expression of a type III PKS from Micromonospora endolithica. Molecules. 2020. Vol. 25(20), P. 4594. https://doi.org/10.3390/molecules25204594.

Maglangit, F., Tong, M. H., Jaspars, M., Kyeremeh, K., & Deng, H. Legonoxamines AB, two new hydroxamate siderophores from the soil bacterium, Streptomyces sp. MA37. Tetrahedron Letters. 2019. Vol. 60(1), P. 75–79. https://doi.org/10.1016/j.tetlet.2018.11.063.

Makar, O., Kavulych, Y., Terek, O., & Romanyuk, N. Plant-microbe interaction: mechanisms and applications for improving crop yield and quality. Біологічні студії/Studia Biologica. 2023. Vol. 17(3), P. 225–242. http://dx.doi.org/10.30970/sbi.1703.730.

Palacios, O. A., Bashan, Y., & de-Bashan, L. E. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biology and Fertility of Soils. 2014. Vol. 50(3), P. 415–432. https://doi.org/10.1007/s00374-013-0894-3.

Rodrigues, M. L., & Nosanchuk, J. D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. In Advances in Clinical Immunology, Medical Microbiology, COVID-19, and Big Data. Jenny Stanford Publishing. 2021. P. 399–411. https://doi.org/10.1371/journal.pntd.0007964.

Sagot, B., Gaysinski, M., Mehiri, M., Guigonis, J. M., Le Rudulier, D., & Alloing, G. Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria. Proceedings of the National Academy of Sciences. 2010. Vol. 107(28), P. 12652–12657. https://doi.org/10.1073/pnas.1003063107.

Selim, M. S. M., Abdelhamid, S. A., & Mohamed, S. S. Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology. 2021. Vol. 19(1), P. 72. https://doi.org/10.1186/s43141-021-00156-9.

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., ... & Collins, J. J. A deep learning approach to antibiotic discovery. Cell. 2020. Vol. 180(4), P. 688–702. https://doi.org/10.1016/j.cell.2020.01.021.

Travin, D. Y., Watson, Z. L., Metelev, M., Ward, F. R., Osterman, I. A., Khven, I. M., ... & Severinov, K. Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition. Nature Communications. 2019. Vol. 10(1), P. 4563. https://doi.org/10.1038/s41467-019-12589-5.