Preliminary estimates of the number and diversity of the culturable endophytic bacteria from Deschampsia antarctica and Colobanthus quitensis
Abstract
Endophytes are able to promote the plant's growth and are essential for their hosts to overcome biotic and abiotic stress. Plant-promoting capacities of these microorganisms can be crucial for Antarctic plants. The aim of the study was to estimate the number and diversity of culturable endophytic microorganisms from Deschampsia antarctica and Colobanthus quitensis growing in different localities of the West Antarctic Peninsula. Methods. Serial dilutions of the surface-sterilized plant biomass were inoculated on the CASO (Merk, USA) and R2A (Merk, USA) media and cultured at room temperature for a week. Number of colonies and their morphotypes were estimated. Results. The number of colony-forming units in the aboveground part and roots of D. antarctica was 4×106 ±2×106 and 7×106 ±2×106 per g of biomass, respectively. The colony forming units CFU number in the aboveground part of C. quitensis was 3×106±1×106 per g of biomass. The highest number of CFU was in the roots of D. antarctica from Galindez Island on both media (n×107). The highest CFU number in C. quitensis was in plants from Deception Island on nutrient-poor (7×106) and -rich (1×107) media. The lowest value was found for C. quitensis from Cape Pérez (7×103 on R2A and 1×104 on CASO). There was no significant difference in the number of CFU grown on nutrient-poor and nutrient-rich medium, but the morphology of the CFU varied on the two media. 112 pure cultures of endophytes were isolated. The vast majority (78%) of the isolates were gram-negative rods. The number of cultured endophytes of Antarctic vascular plans varied across the samples, which can be affected both by the features of the individual plants and the ecology of sites where they grow. Bacterial communities did not significantly vary in number depending on the medium but did somewhat differ in morphology. A collection of 112 endophyte isolates was developed, which is important to study their genetic and physiological traits and mechanisms of plant-bacteria interaction. Conclusions. Isolation of the endophytic microorganisms is important to study their genetic and physiological traits and mechanisms of plant-bacteria interaction.
Keywords: Antarctic hairgrass, Antarctic pearlwort, maritime Antarctica, symbionts of plants
References
Alberdi M., Bravo L. A., Gutiérrez A., Gidekel M., Corcuera L. J. Ecophysiology of Antarctic vascular plants. Physiologia Plantarum. 2002. Vol. 115(4). P. 479-486. doi: 10.1034/j.1399-3054.2002.1150401.x
Barra P. J., Inostroza N. G., Acuña J. J., Mora M. L., Crowley D. E., Jorquera M. A. Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Applied Soil Ecology. 2016. Vol. 102. P. 80–91. doi: 10.1016/j.apsoil.2016.02.014
Brader G., Compant S., Mitter B., Trognitz F., Sessitsch A. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology. 2014. Vol. 27. P. 30-37. doi: 10.1016/j.copbio.2013.09.012
Convey P., Hopkins D. W., Roberts S. J., Tyler A. N. Global southern limit of flowering plants and moss peat accumulation. Polar Research. 2011. Vol. 30. P. 8929. doi: 10.3402/polar.v30i0.8929
Costa L. E. de O., de Queiroz M. V., Chaer Borges A., de Moraes C. A., de Araújo E. F. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Brazilian Journal of Microbiology. 2012. Vol. 43(4). P. 1562-1575. doi: 10.1590/S1517-83822012000400041
Day T. A., Ruhland C. T., Grobe C. W., Xiong F. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia. 1999. Vol. 119(1). P. 24–35. doi: 10.1007/s004420050757
de Almeida Lopes K. B., Carpentieri-Pipolo V., Oro T. H., Stefani Pagliosa E., Degrassi G. Culturable endophytic bacterial communities associated with field-grown soybean. Journal of Applied Microbiology. 2016. Vol. 120(3). P. 740–755. doi: 10.1111/jam.13046
Devi K. A., Pandey G., Rawat A. K. S., Sharma G. D., Pandey P. The endophytic symbiont-Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Frontiers in Microbiology. 2017. Vol. 8. P. 1897. doi: 10.3389/fmicb.2017.01897
Edwards J., Johnson C., Santos-Medellín C., Lurie E., Podishetty N. K., Bhatnagar S., Eisen J. A., Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America. 2015. Vol. 112(8). E911-E920. doi: 10.1073/pnas.1414592112
Grimault V., Prior P. Invasiveness of Pseudomonas solanacearum in tomato, eggplant and pepper: a comparative study. European Journal of Plant Pathology. 1994. Vol. 100. P. 259-267. doi: 10.1007/BF01876240
Hameed A., Yeh M.-W., Hsieh Y.-T., Chung W.-C., Lo C.-T., Young L.-S. Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant and Soil. 2015. Vol. 394(1). P. 177–197. doi: 10.1007/s11104-015-2506-5
Hardoim P. R., van Overbeek L. S., Berg G., Pirttilä A. M., Compant S., Campisano A., Döring M., Sessitsch A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews. 2015. Vol. 79(3). P. 293-320. doi: 10.1128/mmbr.00050-14
Kobayashi D.Y., Palumbo J. D. Bacterial endophytes and their effects on plants and uses in agriculture. In C. W. B. and J. F. White (Eds.), Microbial Endophytes (1st ed.). Marcel Dekker Inc., 2000. P. 199–233.
Komárková V., Poncet S., Poncet J. Two native antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis: a new southernmost locality and other localities in the Antarctic Peninsula area. Arctic and Alpine Research. 1985. Vol. 17(4). P. 401–416. doi: 10.1080/00040851.1985.12004047
Komárková V., Poncet S., Poncet J. Additional and revisited localities of vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. in the Antarctic Peninsula area. Arctic and Alpine Research. 1990. Vol. 22(1). P. 108–113. doi: 10.2307/1551725
Lamb T. G., Tonkyn D. W., Kluepfel D. A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Canadian Journal of Microbiology. 1996. Vol. 42(11). P. 1112-1120. doi: 10.1139/m96-143
Mano H., Morisaki H. Endophytic bacteria in the rice plant. Microbes and Environments. 2008 Vol. 23(2). P. 109-117. doi: 10.1264/jsme2.23.109
Mano H., Tanaka F., Watanabe A., Kaga H., Okunishi S., Morisaki H. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy Field. Microbes and Environments. 2006. Vol. 23(2). P. 109-117. doi: 10.1264/jsme2.21.86
Mei C., Flinn B. S. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology. 2010. Vol. 4(1). P. 81–95. doi.org/10.2174/187220810790069523
Nair D. N., Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal. 2014. 250693. doi.org/10.1155/2014/250693
Parnikoza I., Kozeretska I., Kunakh V. Vascular plants of the maritime Antarctic: origin and adaptation. American Journal of Plant Sciences. 2011. Vol. 2(3). P. 381-395. doi: 10.4236/ajps.2011.23044
Podolich O., Prekrasna Ie., Parnikoza I., Voznyuk T., Zubova G., Zaets I., Miryuta N., Myryuta G., Poronnik O., Kozeretska I., Kunakh V., Pirttila A.M., Dykyi E., & Kozyrovska N. First record of the endophytic bacteria of Deschampsia antarctica Ė. Desv. from two distant localities of the maritime Antarctic. Czech Polar Reports. 2021. Vol. 11(1). P. 134–153. doi: 10.5817/CPR2021-1-10