Fragments of different origins mobile genetic elements in the genome of coronavirus SARS-CoV-2

  • O. V. Pidpala Institute of Molecular Biology and Genetics, NAS of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 150
  • L. L. Lukash Institute of Molecular Biology and Genetics, NAS of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 150

Abstract

Aims. To analyze the presence of fragments of mobile genetic elements (MGE) of pro- and eukaryotic origin in the nucleotide sequence of the new human coronavirus SARS-CoV-2. Methods. The homology between nucleotide sequences was determined by BLAST 2.6.1. The results of the search and identification of MGE were performed using the ISfinder and CENSOR programs. Results. In the genome of the human coronavirus SARS-CoV-2, fragments of 11 bacterial IS elements (0.68% of the viral genome) and 23 eukaryotic MGEs (4.6%) have been identified. Of the 11 SARS-CoV-2 genes, fragments of IS-elements are present in two genes (ORF1ab and M) and in 3’UTR. Fragments of MGE eukaryotes have been detected within four genes (ORF1ab, S, N, and ORF7b) and in 3’UTR. The highest percentage of MGE was found in the ORF7b gene and in 3’UTR. Analyzing the insertion profiles of IS fragments on the example of known human coronaviruses and their intermediate hosts, we have been concluded that the possibility of using fragments of prokaryotic MGE for phylogenetic studies of the new human coronavirus SARS-CoV-2. Conclusions. Based on the obtained results, we have been suggested that fragments of MGE of pro- and eukaryotic origin may play a role in the evolution of the SARS-CoV-2 genome, in particular in the formation of viral genes. They could also be informative phylogenetic markers.
Keywords: human coronaviruses, SARS-CoV-2, MGE, IS-elements, phylogenetic markers

References

Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res. 2018. Vol. 100. P. 163-188. doi: 10.1016/bs.aivir.2018.01.001.

Chu D.K., Poon L.L., Gomaa M.M., Shehata M.M., Perera R.A., Abu Zeid D., El Rifay A.S., Siu L.Y., Guan Y., Webby R.J., Ali M.A., Peiris M., Kayali G. MERS coronaviruses in dromedary camels, Egypt. Emerging Infect. Dis. 2014. Vol. 20, No. 6. P. 1049-1053. doi: 10.3201/eid2006.140299.

Drexler J.F., Corman V.M., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014. Vol. 101. P. 45-56. doi: 10.1016/j.antiviral.2013.10.013.

Emerman M., Malik H. S. Paleovirology – modern consequences of ancient viruses. PLoS Biology. 2010. Vol. 8, No. 2. e1000301. doi: 10.1371/journal.pbio.1000301.

Forterre P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 2006. Vol. 117, No. 1. P. 5–16. doi: 10.1016/j.virusres.2006.01.010.

Hickman A.B., Chandler M., Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 2010. Vol. 45, No. 1. P. 50– 69. doi: 10.3109/10409230903505596.

Holmes E. C. Viral evolution in the genomic age. PLoS Biol. 2007. Vol. 5, No. 10. e278. doi: 10.1371/journal.pbio.0050278.

Hu B., Zeng L.P., Yang X.L., Ge X.Y., Zhang W., Li B., Xie J.Z., Shen X.R., Zhang Y.Z., Wang N., Luo D.S., Zheng X.S., Wang M.N., Daszak P., Wang L.-F., Cui J. , Shi Z.L. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the orgin of SARS coronavirus. PLoS Pathogens. 2017. Vol.13, No.11. e1006698.

Koonin E.V., Dolja V.V., Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology. 2015. Vol. 479-480. P. 2-25.

Lam T.T., Shum M.H., Zhu H.C., Tong Y.G., Ni X.B., Liao Y.S., Wei W., Cheung W.Y., Li W.J., Li L.F., Leung G.M., Holmes E.C., Hu Y.L., Guan Y. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020. doi: 10.1038/s41586-020-2169-0.

Liu P., Jiang J.Z., Wan X.F., Hua Y., Li L., Zhou J., Wang X., Hou F., Chen J., Zou J., Chen J. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog. 2020. Vol. 16, No. 5. e1008421. doi: 10.1371/journal.ppat.1008421.

Memish Z. A., Mishra N., Olival K. J., Fagbo S. F., Kapoor V., Epstein J. H., Alhakeem R., Durosinloun A., Al Asmari M., Islam A., Kapoor A., Briese T., Daszak P., Al Rabeeah A.A., Lipkin W. I. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 2013. Vol. 19, No. 11. P. 1819–1823. doi: 10.3201/eid1911.13117.

Miller W.J., Capy P. Mobile genetic elements as natural tools for genome evolution. Methods Mol. Biol. 2004. Vol. 260. P. 1-20. doi: 10.1385/1-59259-755-6:001.

Mushegian A.R. Are there 1031 virus particles on Earth, or more, or fewer? J. Bacteriol. 2020. Vol. 202, No. 9. pii: e00052-20. doi: 10.1128/JB.00052-20.

Quan P.L., Firth C., Street C., Henriquez J.A., Petrosov A., Tashmukhamedova A., Hutchison S.K., Egholm M., Osinubi M.O.V., Niezgoda M., Ogunkoya A.B., Briese T., Rupprecht C.E., Lipkin W.I. Identification of a Severe Acute Respiratory Syndrome Coronavirus Like Virus in a leaf-nosed bat in Nigeria. mBio. 2010. Vol. 1, No. 4. e00208-10.

Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Peñaranda S., Bankamp B., Maher K., Chen M.-H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C.T., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Günther S., Osterhaus A.D.M.E., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science . 2003. Vol. 300, No. 5624. P. 1394–1399. doi: 10.1126/science.1085952.

Schountz T. Immunology of bats and their viruses: challenges and opportunities. Viruses. 2014. Vol. 6, No. 12. P. 4880–4901. doi: 10.3390/v6124880.

Siguier P., Gourbeyre E., Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 2014. Vol. 38, No. 5. P. 865-891. doi: 10.1111/1574-6976.12067.

Skalka A.M. Retroviral DNA transposition: themes and variations. Microbiol. Spectr. 2014. Vol. 2, No. 5. MDNA300052014. doi: 10.1128/microbiolspec. MDNA3-0005-2014.

Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 2017. Vol. 9, No. 1. P. 161-177. doi: 10.1093/gbe/evw264.

Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016. Vol. 24, No. 6. P. 490-502. doi: 10.1016/j.tim.2016.03.003.

Sun C., Feschotte C., Wu Z., Mueller R.L. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol. 2015. Vol. 13. P. 38. doi: 10.1186/s12915-015-0145-1.

Tengs T., Kristoffersen A.B., Bachvaroff T.R., Jonassen C.M. A mobile genetic element with unknown function found in distantly related viruses. Virol. J. 2013. Vol. 10. P. 132. doi: 10.1186/1743-422X-10-132.

Thomas J., Pritham E.J. Helitrons, the eukaryotic rolling-circle transposable elements. Microbiol. Spectr. 2014. Vol. 3, No. 4. MDNA3-0049-2014. doi: 10.1128/microbiolspec.MDNA3-0049 -2014.

Wang M., Yan M., Xu H., Liang W., Kan B., Zheng B., Chen H., Zheng H., Xu Y., Zhang E., Wang H., Ye J., Li G., Li M., Cui Z., Liu Y.F., Guo R.T., Liu X.N., Zhan L.H., Zhou D.H., Zhao A., Hai R., Yu D., Guan Y., Xu J. SARS-CoV infection in a restaurant from palm civet. Emerging Infect. Dis. 2005. Vol. 11, No. 12. P. 1860-1865.

Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. A unified classification system for eukaryotic transposable elements. Nat. Rev. Gen. 2007. Vol. 8, No. 12. P. 973–982. doi: 10.1038/nrg2165.

Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., Yuan M.L., Zhang Y.L., Dai F.H., Liu Y., Wang Q.M., Zheng J.J., Xu L., Holmes E.C., Zhang Y.Z. A new coronavirus associated with human respiratory disease in China. Nature. 2020. Vol. 579, No. 7798. P. 265-269. doi: 10.1038/s41586-020-2008-3.

Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012. Vol. 367, No. 19. P. 1814–1820. doi: 10.1056/NEJMoa1211721.

Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., HuangC.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Zheng X.-S., Zhao K., Chen Q.-J., Deng F., Liu L.-L., Yan B., Zhan F.-X., Wang Y.-Y., Xiao G.-F., Shi Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. Vol. 579. P. 270-273. doi: 10.1038/s41586-020-2012-7.