The relationship of Wolbachia infection and different phenotypes in the Drosophila melanogaster natural populations from radioactively polluted and clear areas in Ukraine
Abstract
Aim. The study was performed to investigate the relationship between Wolbachia infection and phenotypes that distinct from wild-type of Drosophila melanogaster from different localities in Ukraine including those from Chornobyl Exclusion Zone during 2013–2014. Methods. We have established isofemale lines from populations: Uman’, Inkerman, Odesa, Varva, Kyiv, Drogobych, Yaniv, Poliske, Chornobyl, and Chornobyl Nuclear Power Plant (NPP). The ambient radiation (µSv/h) was measured in the sample sites. The flies were reared in the laboratory through two generations. We carried out the observation of F2 flies for visibly detectable phenotypes. According to whether the trait was inherited, observations were separated into three categories: with deviations of posterior cross-vein (C2) (incomplete penetrance), visible phenotypic changes (non-inherited) and mutations (inherited). Polymerase chain reaction (PCR) with primers specific to the 16S rRNA and Wolbachia surface protein (wsp) genes were used to determine infection presence in isofemale lines of the flies established for each population. Results. Examination of different phenotypes indicates that the highest mutation rate (but not C2 and not inherited changes) is in populations from Chornobyl Exclusion Zone and, therefore, connection with ambient radiation was detected (p = 0.0241). Generalized mixed linear regression has shown evidence that the presence of phenotypes with defects of C2 vein varies with endosymbiont infection presence (p = 0.03473) in the populations from radioactively polluted areas. Conclusion. Wolbachia is not related to occurring phenotypes neither with phenotypic changes nor with mutations, at least in surveyed populations. However, C2 defected phenotypes relates to the bacterial presence in populations from the contaminated area. Nonetheless, the origin of this relationship is unknown and the mechanisms of such a connection require further research.
Keywords: Drosophila melanogaster, Wolbachia, endosymbiont, ambient radiation, mutation, phenotypic change, posterior cross-vein.
References
Aljanabi S. Universal and rapid salt-extraction of high quality genomic DNA for PCR- based techniques. Nucleic acids research. 1997. Vol. 25(22). P. 4692–4693. doi: 10.1093/nar/25.22.4692
Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A.,Wishart D. S. Heatmapper: web-enabled heat mapping for all. Nucleic acids research. 2016. Vol.44(W1). P. 147–153. doi: 10.1093/nar/gkw419
Brennan L. J., Haukedal J. A., Earle J. C., Keddie B., Harris H. L. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect molecular biology. 2012. Vol.21(5). P. 510–520. doi: 10.1111/j.1365-2583.2012.01155.x
Clark R. I., Salazar A., Yamada R., Fitz-Gibbon S., Morselli M., Alcaraz J., Walker D. W. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell reports. 2015. Vol.12(10). P. 1656–1667. doi: 10.1016/j.celrep.2015.08.004
Gora N. V., Kostenko N. D., Maistrenko O. M., Serga S. V., Kozeretska I. A. The lack of correlation between the level of radioactive contamination and infection with Wolbachia in natural populations of Drosophila melanogaster from Ukraine. The Journal of V.N.Karazin Kharkiv National University. Series "Biology". 2016. Vol. 26. P. 60-64.
Hunter C. M., Huang W., Mackay T. F., Singh N. D. The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. PLoS genetics. 2016. Vol.12(4). doi: 10.1371/journal.pgen.1005951
Hussain M., Frentiu F. D., Moreira L. A., O'Neill S. L., Asgari S. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proceedings of the National Academy of SciencesProc. 2011. Vol.108(22). P. 9250–9255. doi: 10.1073/pnas.1105469108
Kozeretska I. A., Serga S. V., Kunda-Pron I., Protsenko O. V., Demydov S. V. A high frequency of heritable changes in natural populations of Drosophila melanogaster in Ukraine. Cytology and genetics. 2016. Vol.50(2). P. 106–109. doi: 10.3103/S0095452716020092
Newton I. G., Sheehan K. B. Passage of Wolbachia pipientis through mutant Drosophila melanogaster induces phenotypic and genomic changes. Appl. Environ. Microbiol. 2015. Vol.81(3). P. 1032–1037. doi:10.1128/AEM.02987-14
O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences. 1992. Vol.89(7). P. 2699–702. doi: 10.1073/pnas.89.7.2699
Roberts D.B. Drosophila: a practical approach. New York; Oxford University Press, 1998. 2nd ed. 389 p. doi: 10.1038/24550
Rosenberg E., Sharon G., Zilber-Rosenberg I. The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environmental microbiology. 2009. Vol.11(12). P. 2959–2962. doi: 10.1111/j.1462-2920.2009.01995.x
Rutherford S.L., Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998. Vol. 396(6709). doi: 10.1038/24550
Schertel C., Rutishauser T., Förstemann K., Basler K. Functional characterization of Drosophila microRNAs by a novel in vivo library. Genetics. 2012. Vol.192(4). P. 1543– doi: 10.1534/genetics.112.145383.
Serga S. V, Demidov S. V, Kozeretska I.A. Infection with Wolbachia does not influence crossing over in Drosophila melanogaster. Cytology and genetics. 2010. Vol.44(4). P. 239–243. doi: 10.3103/S0095452710040092
Serga S. V., Kozeretska I. A. The puzzle of Wolbachia spreading out through natural populations of Drosophila melanogaster. Journal of General Biology. 2013. Vol. 74(2). P. 99-111. doi: 10.1134/S2079086414010058
Starr D.J., Cline T.W. A host–parasite interaction rescues Drosophila oogenesis defects. Nature. 2002. Vol.418(6893). P. 76–79. doi: 10.1038/nature00843
Team R. C. R: A language and environment for statistical computing. 2018
Teresa E. A. Effects of Environment and Genetic Background on Transposable Element Activity in Drosophila melanogaster: Doctoral dissertation. 2015.
Truitt A. M., Kapun M., Kaur R., Miller W. J. Wolbachia modifies thermal preference in Drosophila melanogaster. Environmental microbiology. 2018. doi: 10.1111/1462-2920.14347
Waddington C.H. Genetic Assimilation of an acquired character. Evolution. 1953. Vol.7(2). P. 118. doi: 10.1111/1462-2920.14347
Wang L., Zhou C., He Z., Wang Z. G., Wang J. L., Wang Y. F. Wolbachia infection decreased the resistance of Drosophila to lead. PloS One 2012. Vol.7(3). doi: 10.1371/journal.pone.0032643
Zakharov I. K., Vaulin O. V., Ilinsky Yu. Yu., Yurchenko N. N. Institute Sources of genetic variability in natural populations of Drosophila melanogaster. Vavilov Journal of Genetics and Breeding. 2008. Vol. 12(1/2). P. 112–126.
Zheng Y., Wang J. L., Liu C., Wang C. P., Walker T., Wang Y. F. Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila. BMC Genomics. 2011. Vol.12(1). P. 595. doi: 10.1186/1471-2164-12-595
Zhou W., Neill S.O. Phylogeny and PCR-based classication of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London B: Biological Sciences. 1998. Vol. 265. P. 509-515. doi: 10.1098/rspb.1998.0324
Zug R., Hammerstein P. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia–host interactions. Frontiers in microbiology. 2015. Vol.6. P. 1–16. doi: 10.3389/fmicb.2015.01201